WUMBC

What is the source of TeV emission from blazar AP Librae?

Agniva Roychowdhury, Eileen Meyer, Markos Georganopoulos, Peter Breiding, Maria Petropoulou
University of Maryland Baltimore County
37th International Cosmic Ray Conference, 12-23 July 2021

Blazars, neutrinos and cosmic rays

The unusual spectrum of AP Librae

- Spread through 20 decades in energy.
- Origin of VHE emission unknown: one-zone synchrotron self-Compton models not viable.
- Zacharias+, Sanchez+ 2016: inverse Compton scattering of Cosmic Microwave Background photons in the kpc-scale jet ("IC/CMB"): multi-TeV electrons, equipartition field and near Eddington jet power.
- Hervet+ 2015. pc-scale blob-in-a-jet model: leptonic radiation but super-Eddington jet powers dominated by protons.
- Petropoulou+ 2016. Photohadronic processes in the core: 10-100 times
 Eddington power, radiation dominated by 1000 TeV protons.

Goal of this work

- Different explanations considerably at variance.
- <u>Goal of this work:</u> test the predictions of the Zacharias +16 IC/CMB model.
- Analyzed radio (VLA/ALMA) to IR (HST) data for the extended jet.
- Analyzed 12 years of Fermi data of AP Librae.

IC/CMB for TeV emission: not viable

Log Frequency [Hz]

Observing the thermal excess using HST

6/10

>100 GeV emission: IC/CMB TeV emission: IC/Dust

-16

- De-projected location of TeV emission (0.4-0.8 kpc) > 5 times width of the torus (0.1 kpc).
- Immune to γ - γ pair production opacity.
- TeV emission from pc-scale core can be ruled out ($\tau_{\gamma\gamma} >> 1$ for the sub-pc jet, Blandford 1993).

Roychowdhury et al. (in prep)

10

(>0.1 kpc jet)

15

20

Log Frequency [Hz]

H.E.S.S.

25

Where does our model stand?

- Plausible explanation of TeV emission is IC/Dust in the >100 pc jet.
- Purely leptonic model: but requires continual acceleration through ~ 1 kpc in de-projected length.
- Uses the least number of model parameters compared to previous studies.
- Max electron energies ~ 100 GeV.
- Requires sub-Eddington jet luminosity (lower limit to total jet power).
- Magnetic field in the extended jet close to equipartition.

Possible future directions

- IC/Dust (sub-mm to IR) in the sub-kpc jet is responsible for the TeV emission.
- IC/CMB is responsible for the GeV emission.
- Test(s): check variability in the >100 GeV band with upcoming Cherenkov Telescope Array (CTA).
- Constrain optical/IR synchrotron spectrum with deeper JWST observations.
- Re-observing with Fermi to further constrain GeV spectral shape.

Simulated light curves from photo-hadronic models (Petropoulou+ 2016): open to tests using Chandra, Fermi, CTA.

Global implications of a CND/sub-kpc torus in a BL Lac

- Kpc-scale CND/dust-lanes routinely observed in radio galaxies (e.g., de Koff+ 2000, ApJSS, 129, 33).
- BL Lacs lineless or weak-lined spectrum, weak accretion and weak jets.
- No observational evidence of pc-scale tori in BL Lacs (Plotkin+ 2012).
- Are some BL Lacs in the strong accretion regime? (Keenan+ 2021)
- Follow up with deep spectral line observations using ALMA and JWST.

Radio Galaxy 3C 31. Left: Absorption map; Right: HST image. (de Koff+ 2000)