

# **Double-layered Water Cherenkov Detector for the Southern Wide-field** Gamma-ray Observatory (SWGO)

# Water Cherenkov Detector

Figure 1: Cylindrical Double Layered WCD (DLWCD) design comprising an upper chamber  $(\pi \times 1.91^2 \times 2.5 \ m^3)$  with white walls and black bases (top and bottom) and an entirely white lower chamber  $(\pi \times 1.91^2 \times 0.5 \ m^3)$ . The upper chamber comprises an 8" PMT facing upwards, and the lower chamber comprises an 8" PMT facing downwards. A  $\mu^+$  (green) penetrates the DLWCD and produces photons (red). The number of photons has been limited here for illustration purposes. (Download pdf to view embedded simulation.)

## Unit Design

The double-layered WCD (DLWCD) is a candidate design for SWGO:

- Upper Chamber. A light-tight chamber with combination of reflective and non-reflective surfaces, and a single upward-facing light sensor. Provides timing information and an estimate of total local particle energy per unit area.
- Lower Chamber. A light-tight chamber with a highly reflective lining and a single light sensor facing downwards. Enables  $\mu^{\pm}$  tagging.

Samridha Kunwar on behalf of the SWGO collaboration

Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg, DE 69117

## **Particle Detection Efficiency**

The simulations use GEANT4 [1] within a simulation framework adapted from the HAWC collaboration [2].

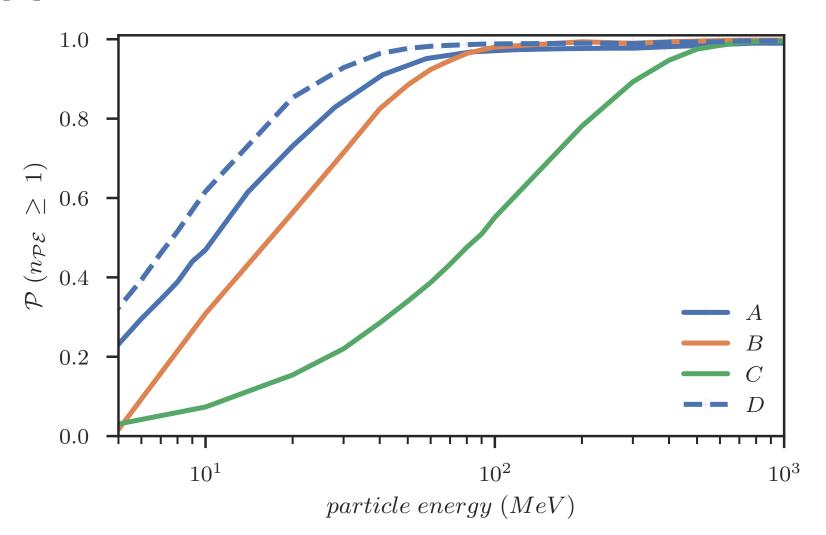



Figure 2: Injection of vertical  $\gamma$ -rays across the top surface of different WCD designs. [A] white cylindrical DLWCD unit  $(\pi \times 1.91^2 \times 2.5 \ m^3)$  with a black top and an 8" PMT, a [B] HAWC - like design  $(\pi \times 3.65^2 \times 4 \ m^3)$  with black walls, a central 10" PMT and 3x8" PMTs', a [C] LHAASO - like black unit  $(5 \times 5 \times 4.5 \ m^3)$  with an open top and an 8" PMT and a [D] white cylindrical DLWCD unit  $(\pi \times 1.71^2 \times 3 m^3)$  with a black top and an 8" PMT.

Array

Figure 3: Simulated array layout of cylindrical DLWCDs with a dense inner array (> 80%) and sparser outer array (~ 8%). The simulation here (download pdf) shows a 500 GeV  $\gamma$ -ray shower at a Zenith angle of  $20^{\circ}$  impinging upon the array.

Figure 5: Gamma - Hadron separation efficiency for an array of double-layered WCD's (upper -  $\pi \times 1.91^2 \times 2.5 m^3$ ) with  $\sim 80\%$  fill factor varying material reflectivity, an exclusion region of 40 m and 547  $\leq nhits < 1280$ .

Fit of Landau distribution to arrival times as a function of distance to shower core and charge to obtain mean and width parameters followed by a 3parameter likelihood fit (MINUIT [3]).

# Angular Resolution

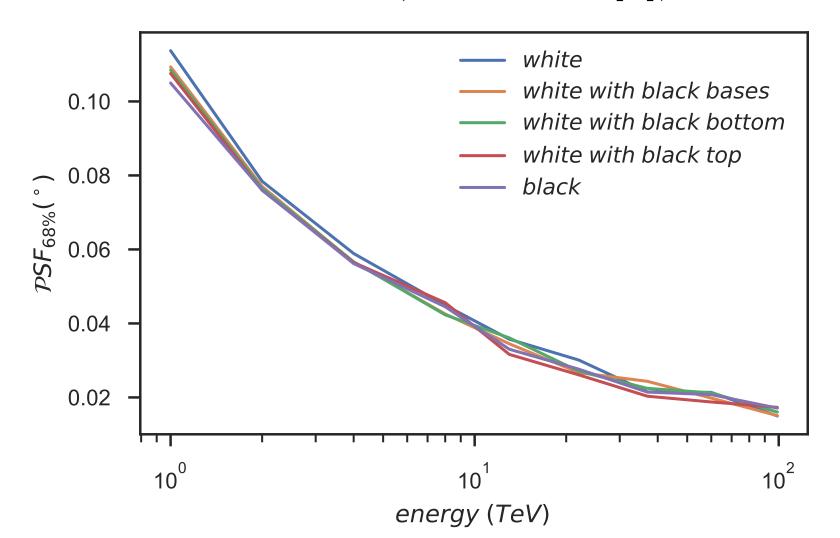
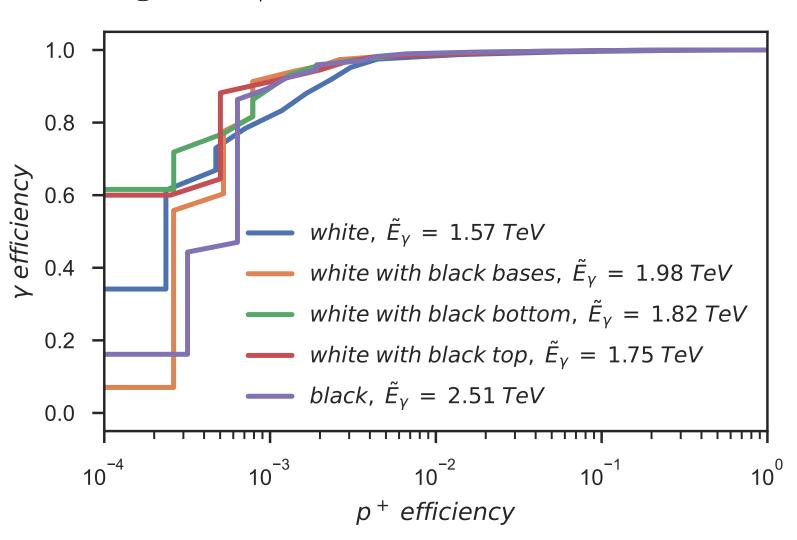




Figure 4: 68% containment for 1 - 100 TeV vertical  $\gamma$ -ray's for an array of double-layered WCD's (upper -  $\pi \times 1.91^2 \times 2.5 m^3$ ) with  $\sim 80\%$  fill factor varying the material properties. Showers thrown at the center of the array.

# **Gamma - Hadron Separation**

Template-based maximum log-likelihood method comprising charge in the two chambers implemented to discriminate between  $\gamma$ -ray and hadron induced air showers. An exclusion region is defined to account for the high transverse momentum of  $\mu^{\pm}$  and punch-through of  $\gamma \& e^{\pm}$  close to the shower core.



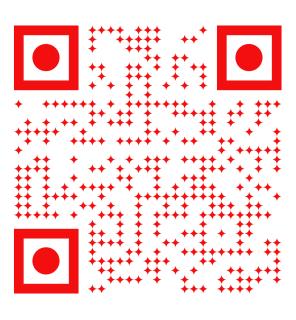
• The Southern Wide-field Gamma-ray Observatory (SWGO) will use the well-established and cost-effective technique of detecting Cherenkov light produced in water-filled detection units for TeV gamma-ray astronomy. • The double-layered WCD leverages material and aspect-ratio to enhance sensitivity, achieve excellent angular resolution and gamma hadron separation.

[3] F. James, MINUIT Function Minimization and Error Analysis: Reference Manual Version, 94.1, CERN-D-506 (2017)

Double-layered WCD for SWGO proceeding






Summary

## References

[1] S. Agostinelli et al., Nucl. Instrum. Methods *Phys. Res.***A 506** 205-303 (2003).

[2] A. U. Abeysekara et al. (HAWC Collaboration), Astrophys. J. 843, 39 (2017).

## **Additional Information**



#### **Contact Information**

• Web: http://www.swgo.org • Email: samridha.kunwar@mpi-hd.mpg.de

