

Constraining the contribution of Gamma-Ray Bursts to the high-energy diffuse neutrino flux with 10 years of ANTARES data

Angela Zegarelli, Silvia Celli

angela.zegarelli@roma1.infn.it silvia.celli@roma1.infn.it

On behalf of the ANTARES Collaboration

Additional slides

GRB selection and parameters

From available catalogues:

ime Direction

- Photon spectrum
- Fluence ullet
- Redshift

GRB SEARCH

SIMULATION of the EXPECTED **NEUTRINO FLUENCES**

- We selected only GRBs with $\gamma_1 > -4$ $\gamma_2 > -5$
- When γ_2 is not available from α $\gamma_2 = \gamma_1 - 1$
- When E_{break} is not available from $E_{break} = 200 \text{ keV}$
- $(L_{\gamma,iso} \text{ depends both on } z \text{ and } F_{\gamma})$

Angela Zegarelli, online, ICRC 2021

- Satellite angular uncertainty less than 10°
- Position taken by the satellite with the smallest angular error

Only neutrino events below the ANTARES horizon at trigger time

catalogues (1.4%):	Source	Position	S
	Swift	29.9%	
	Swift-BAT	9.3%	
om catalogues (33%):	Swift-UVOT	3.4%	
	Swift-XRT	17.2%	
	Fermi	68.8%	
	Other (e.g. Konus-Wind)	1.3%	

• At least one parameter among fluence and redshift known in order to reduce the uncertainties on the neutrino fluence estimation

ANTARES Collaboration, MNRAS 500, 5614–5628 (2021)

Comparison with the previous ANTARES stacking GRB analysis

Angela Zegarelli, online, ICRC 2021

Adrián-Martínez S. et al. (ANTARES Collaboration), 2013, A&A 559A

ANTARES Collaboration, MNRAS 500, 5614–5628 (2021)

z and Γ distributions from random extractions

ANTARES Collaboration, MNRAS 500, 5614–5628 (2021)

Angela Zegarelli, online, ICRC 2021

Example for GRB08102853

Systematic uncertainties on neutrino flux expectations

Angela Zegarelli, online, ICRC 2021

To evaluate the statistical uncertainty on the neutrino fluence, we:

- Calculate the mean of these 1000 simulations;
- 2. Use percentiles to infer $\sigma(E_{\nu_{\mu}}^2 F_{\nu_{\mu}})$;
- 3. Quote $E_{\nu_{\mu}}^2 F_{\nu_{\mu}} \pm 2\sigma$.

The 2.28% of the values at the right and at the left of the $E_{
u_{\mu}}^2 F_{
u_{\mu}}$ distributions have been excluded (in each energy bin) -2σ is the 2.28th percentile $+2\sigma$ is the 97.72nd percentile

The statistical error around the neutrino fluence of the GRBs with known values of t_v and z were obtained by propagating t_v and z uncertainties on $E_{\nu}^2 F_{\mu}$

Systematics on treatment on Lorentz factor Γ

ANTARES Collaboration, MNRAS 500, 5614–5628 (2021)

Angela Zegarelli, online, ICRC 2021

By using the Ghirlanda et al. 2012 method to estimate Γ , the stacking neutrino fluence would increase at lower energies; The new analysis optimization results into an expected number of neutrino events increased by a factor ~ 10.