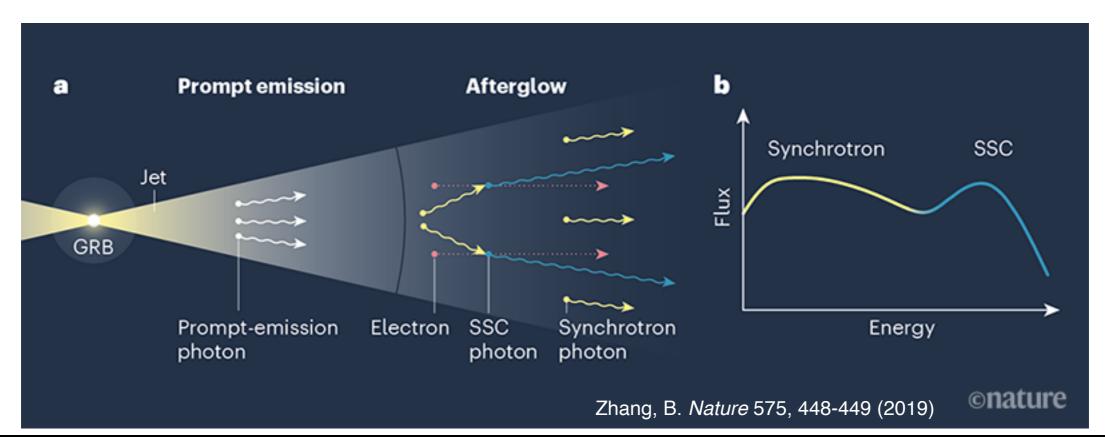
Very-high-energy gamma-ray emission from GRB 201216C detected by MAGIC

Satoshi Fukami

Alessio Berti, Serena Loporchio, Yusuke Suda, Lara Nava, Koji Noda, Željka Bošnjak, Katsuaki Asano and Francesco Longo on behalf of the MAGIC Collaboration


37th ICRC (2021)

Very-high-energy gamma rays from GRBs

2

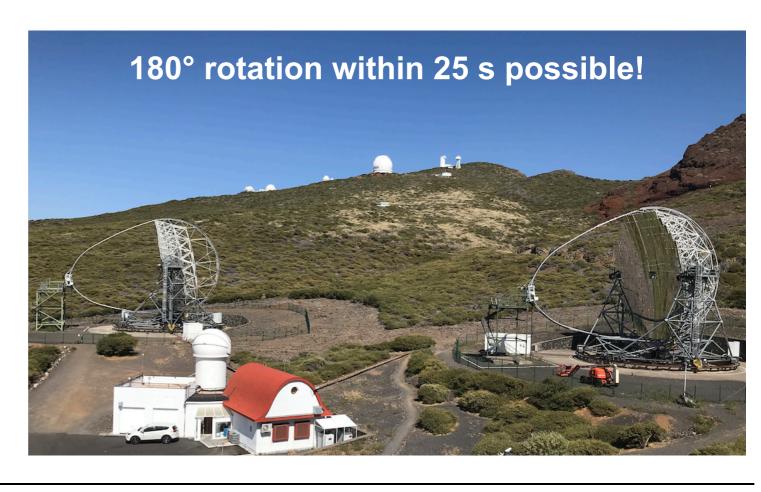
- So far 3 GRBs have been detected at very high energy (VHE, > 50 GeV) gamma rays.
 - **GRB 180720B** (H.E.S.S.) : a long GRB (z 0.65, E_{iso} 6*10⁵³ erg @ 50-300 keV)
 - GRB 190114C (MAGIC): a long GRB (z 0.42, E_{iso} 3*10⁵³ erg @ 1-10⁴ keV)
 - **GRB 190829A** (H.E.S.S.) : a low-luminousity GRB (*z* 0.078, *E*_{iso} 2*10⁵⁰ erg @ 10-1000 keV)
- Synchrotron Self-Compton (SSC) by relativistic electrons can explain the VHE emission for at least the first 2 GRBs.
 - Is SSC a common emission mechanism of VHE GRBs? Still we need more GRBs...

GRB 201216C

3

a bright long GRB triggered by Swift BAT (on 23:07:31 UT on Dec 16th, 2020 : T₀)

- T₉₀ (Swift BAT, 15-350 keV): 48+-16 s
- late-time X-ray observation (by Swift XRT) from T₀+3ks
- late-time UV observation (by UVOT) from T₀+3ks, GeV observation (by Fermi LAT) from T₀+3.5ks
 - no detection by UVOT or Fermi-LAT
- a few optical observations
 - VLT detected with r' 21.8 mag at T₀+2.19 h : redshift z : 1.1
 - Liverpool Telescope detected with r' 18.4 mag at T₀+177 s
 - FRAM-ORM detected after T₀+31.6 s
- E_{iso} (Fermi GBM, 10-1000 keV): 4.7*10⁵³ erg
- no detection > 100 TeV by HAWC, no neutrino detection by IceCube


See https://gcn.gsfc.nasa.gov/other/201216C.gcn3 in detail

MAGIC telescopes

MAGIC (Major Atmospheric Gamma Imaging Cherenkov telescope)

- **location**: La Palma, Canary Islands, Spain (28°N, 18°W)
- systems: 17-m parabolic primary mirror, photomultiplier focal plane × 2
- performance :
 - energy range : 50 GeV 30 TeV
 - field of view : 3.5° (0.1° for 1 pixel)
 - energy resolution :
 - ~20% @100 GeV, 15% @1 TeV
 - angular resolution:
 - ~5 arcminutes @100 GeV,
 - ~3 arcminutes @1 TeV
 - effective area :
 ~10⁴ m² @100 GeV, ~10⁵ m² @1 TeV
 - integral sensitivity :~0.6% crab unit > 220 GeV

MAGIC observation of GRB 201216C

5

- observation for **2.2 h** soon after T₀
 - automatic fast repositioning immediately after receiving the alert at T₀+22 s
 - stable observation with data taking started from T₀+56 s
- moonless dark night
- good weather through all the observation
- zenith angle from 37 deg to 68 deg : moderate energy threshold

[Previous | Next | ADS]

GRB 201216C: MAGIC detection in very high energy gamma rays

ATel #14275; Oscar Blanch (IFAE-BIST) on behalf of the MAGIC Collaboration on 17 Dec 2020; 17:23 UT

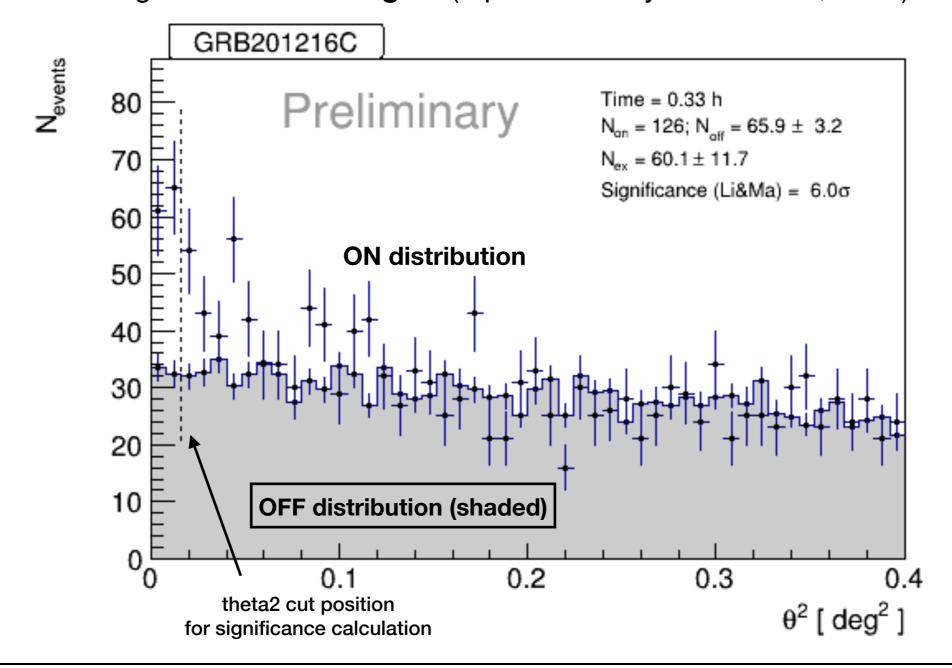
Credential Certification: Oscar Blanch (blanch@ifae.es)

Subjects: Gamma Ray, >GeV, TeV, VHE, Gamma-Ray Burst

Referred to by ATel #: 14277

On December 16, 2020, the MAGIC telescopes observed GRB 201216C following the trigger by Swift-BAT and Fermi-GBM (Beardmore et al., GCN 29061, Fermi/GBM team GCN 29063). MAGIC started observations under good conditions about 57 seconds after the GRB onset. The preliminary off-line analyses show an excess above 5 sigma, compatible with the GRB position reported by the Swift and Fermi teams. Refined off-line analyses of the data are ongoing.

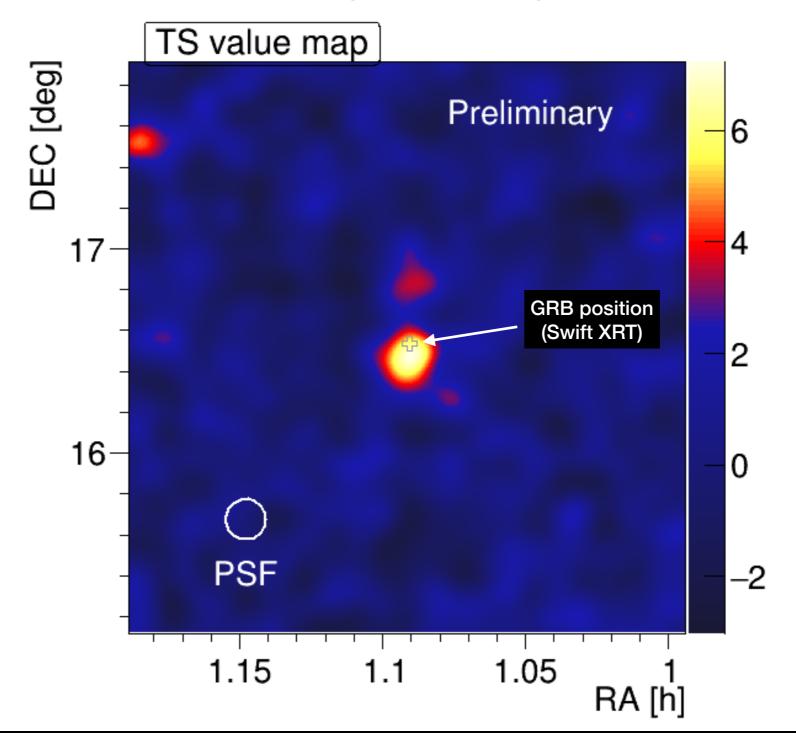
detection by offline analysis


theta2 plot

6

theta2: squared angular distances to the GRB position for ON/OFF regions

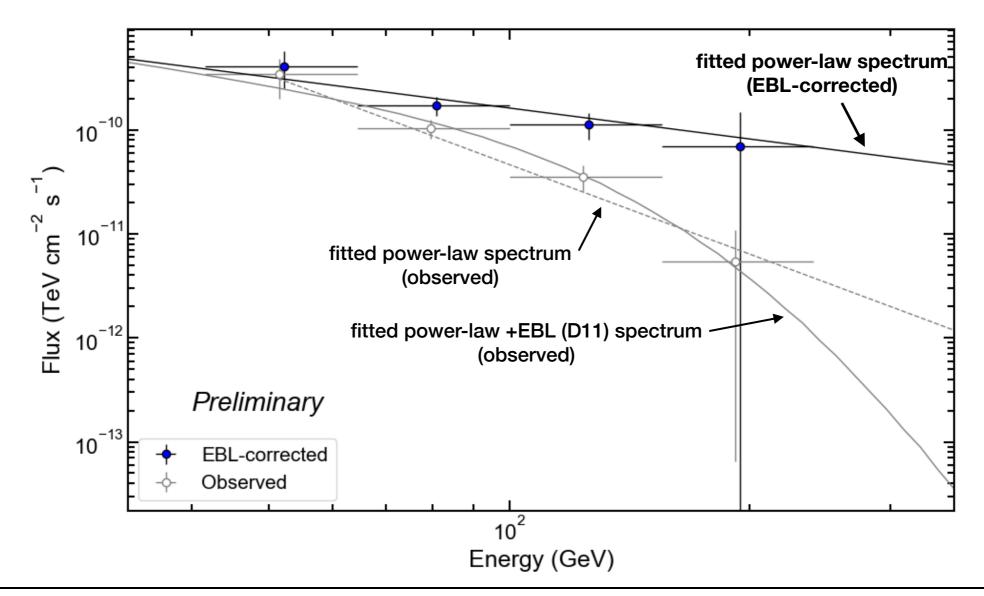
- 6 sigma significance around the GRB position for the first 20 min with optimized cuts
 - post-trial significance of **5.9 sigma** (2 periods analyzed : 20 min, 2.2 h)



skymap

Significance sky map around the GRB position for the first 40 min

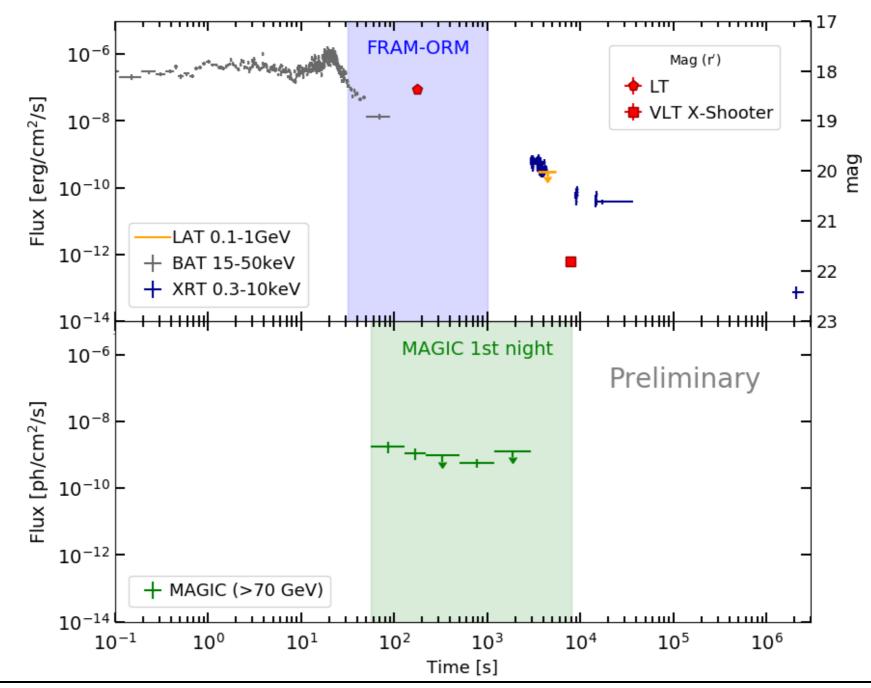
- 6 sigma significance around the GRB position with optimized cuts


unfolded spectra

8

unfolded spectrum (points) and forward folded spectrum (fitted line) for the first 20 min

- observed spectrum (open circle and gray dashed/solid lines) shows a steep slope due to strong attenuation by EBL at z~1.1
- EBL-corrected spectrum by Dominguez 2011 (filled circle and solid line) shows a much flatter shape and is consistent with a power-law



photon flux light curve

MAGIC photon light curve above 70 GeV together with multiwavelength light curves

- MAGIC photon flux decays monotonically with time from the beginning (T₀+56 sec)
- Only upper limits are obtained after T₀+20 min

Discussion

10

- MAGIC observation is possibly in the afterglow phase from the beginning of the light curve.
- Different temporal index between X-ray and VHE gamma rays
 - suggesting different process of VHE emission from that of X-ray emission
 - SSC would be one of the possible models (like GRB 190114C)

Detailed modeling will be provided in the upcoming paper.

- similarity with GRB 190114C, or other typical long GRBs:
 - monotonic decay in the light curves of MAGIC from T₀+~60 s
 - T₉₀: order of 10-100 s
 - main peak of the prompt emission finished at ~T₀+10-20 s
 - Eiso: order of 1053 erg

VHE emission might be common in long GRBs.

Summary

11

- MAGIC observed GRB 201216C from T₀+56 s, and detected VHE gamma rays above 5 sigma around the GRB position.
- The offline analysis shows 6 sigma for the first 20 min observation.
- The observed spectrum has a very steep spectral index. The EBL-corrected spectrum is much flatter and consistent with a power-law.
- The photon light curve shows a monotonic decay at least up to T₀+20 min.
- The VHE emission could be already in the afterglow phase, and might not be explained by the synchrotron emission. The modeling results will be shown in the upcoming paper.
- Future VHE observations and detections on GRBs will provide a deeper insight on the emission processes and physical conditions. Stay tuned!

12

backup