HESS J1858+020: A GeV-TeV source possibly powered by cosmic rays from SNR G35.6-0.4

Yudong Cui* (Sun Yat-Sen University) **Yuliang Xin* (Southwest Jiaotong University)** Siming Liu (Southwest Jiaotong University) Thomas Tam* (Sun Yat-Sen University) Gerd Püehlhofer (Institut für Astronomie und Astrophysik) Hui Zhu (National Astronomical Observatory, CAS)

SNRs & Cosmic Rays

Supernova remnants (SNRs) have been proposed as the dominant contributor to galactic cosmic rays (Baade & Zwicky 1934).

 SNRs have enough total power ---10%, 3 per century, CR density (1eV/cm3);

Escaping CRs & Molecular Clouds

Aharonian etal 2008

SNR W28

HESS J1858+020 & SNR G35.6-0.4

TeV gamma-ray emission of HESS J1858+020 may origin from the hadronic interaction between the molecular gas and the cosmic rays accelerated by the shock front of the SNR G35.6-0.4.

Fermi-LAT Data Analysis

TS maps with photons above 5 GeV (left) and 10 GeV (right)

Fermi-LAT Data Analysis

5–500 GeV	RA & Dec	1σ error radius	Spectral index	Photon flux $(10^{-10} \text{ ph cm}^{-2} \text{ s}^{-1})$	TS value
SrcX1	284.476° & 2.265°	0.040°	3.73 ± 0.49	2.62 ± 0.49	49.1
SrcX2	284.578° & 2.095°	0.029°	2.31 ± 0.27	1.99 ± 0.45	39.3
5-10 GeV					
SrcX1	284.452° & 2.251°	0.038°	3.02 ± 0.94	2.54 ± 0.47	48.6
SrcX2	284.578° & 2.095°(fixed)		2.31(fixed)	1.15 ± 0.39	13.3
10–500 GeV					
SrcX1	284.476° & 2.265°(fixed)	0.037°	3.73(fixed)	<0.37	0.2
SrcX2	284.554° & 2.076°		2.30 ± 0.41	0.85 ± 0.22	28.2

SNR G35.6-0.4(SrcX1?): soft spectrum with low energy emission

HESS J1858+020(SrcX2): hard spectrum with high energy emission

Fermi-LAT Data Analysis

A hadronic explanation for HESS J1858+020

- SNR G35.6-0.4 -- a possible middleaged SNR;
- SNR evolution profile with a homogeneous circumstellar medium;
- acceleration theory with nonresonant streaming instability -- to generate CRs with energies of >100 TeV in the early SNR stage;
 - the damping of the magnetic waves
 by the neutrals in the late SNR stage
 -- for the release of CRs with
 energies down to ~10 GeV;
- a diffusion coefficient that is much lower than the Galactic value and, in particular, a hard index of diffusion coefficients is needed to suppress the diffusion of early-released TeV CRs.

Thanks for your attention!