

Detection of the third class of gamma-ray bursts Magnetar giant flares Burs et al. 2021 ApJL DOI: 10.3847/2041-8213/abd8e8

Michela Negro, CRESST-GFSC/UMBC (<u>mnegrol@umbc.edu</u>) - On behalf of the working team -

11.4 Million years ago...

15 Million light-years from the Sun

NGC 253

SUN

Video Credit: NASA

15 April 2020...

15 April 2020...

For details on Fermi-LAT detection of GRB 200415 See N. Di Lalla's invited talk For details on Fermi-GBM detection of GRB 200415 See E. Bissaldi's talk

Konus

A Population of MGFs

Extragalactic MGFs and GRB

Known nearby MGF sample:

GRB 790305B **GRB 980827** GRB 041227

Only two extragalactic MGF candidates in literature:

GRB 051103 → SGRB **GRB 070201**

Set upper bound: SGRB to have MGF origin < 8%*

* These studies and their conclusions generally assumed that the brightest MGFs could be detectable to tens of Mpc.

HIGH INTRINSIC RATE!

Extragalactic counterparts observed as GRBs

Set lower bound: SGRB to have MGF origin > 1%*

Extragalactic MGFs and GRB

How to understand that MGFs are progenitors of a class of SGRB?

PROBLEM:

Loss of the smoking gun signature

We carried out a study based on spatial information: SGRBs with MGF origin have to be consistent with local* known galaxies

* within 50 Mpc

E. Burns et al. (MN). 2021, Published in Ap. J. Letters

Video Credit: NASA

Galaxies sample

- * Position —> (RA, DEC, d) Info for each galaxy:

 - * Star formation rate (SFR)

zOMGS = GALEX (UV) + WISE (IR)z=0 Multiwavelength Galaxy Synthesis: + supplement <10 Mpc with the Local Volume Galaxy (LVG) Catalog + SFR, ang. ext. from Census of the Local Universe (CLU) Catalog

>100,000 galaxies (0.5-200 Mpc)

	PGC2789 NGC0253	PGC2758 NGC0247	PGC1851 NGCD134	PGCR00 NGC0045	POC701 NGC0024	PGC5548 NgC0813	PGC3206 NGC0300	PCC73048 NGC7793	PCC67964 NGC71ENCC	LEDC. GROUP PS00 265
6 = -87	7	6	b = -82	680 b	80	b = -80	b.= -79	6 =77	•	a = -50
	PGC1014 NGC0065	POC143 UGCA444	PGC5896 NGC0825	PGC71775 PO0071775	PGC9057 NGC0108	PGC71001 NGC7582	PGC71948 PGC071948	PGC10488 NGC1097	PGCpT045 VCETOS0	PCC12266 BCC1343
						1. 11. 1	1		1	
571		b = -73	673	6 9E 6	68	'b = -65	«b64	6 64	n 46	4.15
	PGC70304 NGC7456	PGC80994 NGC7410	PGC70096 NGC7424	PGC70094 POC070094	PGC71047 NGC7606	PGC3844 UGC00668	PGC11819 NGC1232	PGC12209 NCC1291	POCIONS NOCISCO	PCC65803 PCC065803
			10.3						1	1
664		662	b 62	6 - 61 b	61	b60	6 57	b = -67	n = -35	3 36
	PGC4948 NGC0488	PGC12651 N0C1316	PGC12823 NGC1340	PGC12412 NGC1300	PGC13069 N0C1350	PGC88618 PGC068618	PGC13179- NOC1305	PGC12838 NGC1332	PGC62886 NGD5744	FGC0383 Scc0925
				121	1.1				No Me	nel
6		b56	b = -56	6 = -55	55	654	854	654	e = -20	s = 1-85
	PGC11139 PQC011139	PGC13418 N6C1399	PGC13433 NGC1404	PGC18434 NGC1398	PGC10266 MESSIER077	PGC10208 NGC1055	PGC13727 NOC1448	PCC13566 NGC1438	Patriasi	PECEBOOI

* Angular extent (if > any resolution = ellipse)

GRB sample

GRB selection and info:

★ SHORT! (T90 < 2 s)

* Measured bolomertic fluence at Earth (I keV - 10 MeV) -> S * Well localized (from all available info, IPN*, Localization area

(90% confidence) < \sim 4 deg²)

* this work required additional 100 IPN locations:

CGRO-BATSE + Konus-WIND + Swift-BAT + Fermi-GBM + additional info from the IPN

250 SGRB

Swift

The search

particular fluence at Earth

E. Burns et al. (MN). 2021, Published in Ap. J. Letters

Discovery of local extragalactic population of GRBs

Four local GRBs, hosts, odds of chance alinement

1 in 70,000

1 in 10,000

1 in 130,000

1 in 230,000

E. Burns et al. (MN). 2021, Published in Ap. J. Letters

Key parameters comparison

Two main characteristics distinguish SGRB candidate to have a MGF origin from the rest SGRBs:

* Very short rise time (a few milli-seconds: far way shorter than cosmological GRBs) * Intrinsic energetic (orders of magnitude fainter than cosmological GRBs)

E. Burns et al. (MN). 2021, Published in Ap. J. Letters

A Population of MGFs

MGFs Intrinsic Energetic

Simulate a large number of extragalactic MGFs:

- * E_{iso} from PDFs over a range of α values
- * Each assigned to specific host galaxy (weighted by its SFR and distance)

Detected events: those where the sampled E_{iso} and distance produce a flux greater than our detection threshold.

MGFs Intrinsic Rate

Convolution of

* 2D PDF for alpha VS number of detected MGFs (6*) * Intrinsic rate expected for a given alpha and number of detected MGFs

* the first detected MGF used a different IPN calibration, so we discarded it

$$\frac{4.0}{3.1} \times 10^5 \text{ Gpc}^{-3} \text{yr}^{-1}$$

E. Burns et al. (MN). 2021, Published in Ap. J. Letters

Summary

* 4 short GRBs occurred within ~5 Mpc which are the closest events by an order of magnitude in distance * They are inconsistent with a collapsar or neutron star merger origin (lack of SN or GW counterparts) * Their prompt emission is inconsistent with the properties of cosmological GRBs * They originate from star-forming galaxies, including those with metallicity that prevents collapsars from occurring * 4 out of 250 SGRBs have MGFs origin: ~2% of detected short GRBs * Intrinsic energetics distribution of MGFs: a power-law with index $\alpha = 1.7 \pm 0.4$ * The volumetric rates are $R_{MGF} \sim 380000 \text{ Gpc}^{-3}\text{yr}^{-1}$. * The rates and host galaxies of these events favor CCSN as the dominant formation channel for magnetars, requiring at least 0.5% of CCSN to produce magnetars. * Our results suggest that some magnetars produce multiple MGFs: this would be the first known source of repeating GRBs. * GRB 070222 suggests MGFs can have multiple pulses. * MGFs may not be detectable to tens of Mpc with existing instruments due to their spectral hardness. * The LAT detection is the first GeV detected emission form a MGFs

opening new windows for possible explanations.

* LAT detected delay suggests the prompt MeV emission and GeV emission are generated in different regions

Thank you for watching!

Virtually in Berlin, 14 July 2021

Michela Negro, CRESST-GFSC/UMBC (<u>mnegrol@umbc.edu</u>)

Backup slides for the discussion

Michela Negro, CRESST-GFSC/UMBC (<u>mnegrol@umbc.edu</u>)

Virtually in Berlin, 14 July 2021

Fermi-GBM detection

O.j. Roberts, et al. 2021, Published in Nature

PGRB

PMGF

PMGF X PGRB

MGF Intrinsic Rate

Event

Magnetar Giant Flares

Neutron Star Mergers (short GRBs)

Collapsars (long GRBs)

Type la Supernovae

Core-Collapse Supernovae

Why have we not identified MGFs more and to greater* distances?

*they were thought to be detectable to tens of Mpc

Local Rates (Gpc ⁻³ yr ⁻¹)	Identified events
380,000	7
320 ^a	~ 2000
~100 ^b	~10,000
30,100 ^d	~15,000 ^e
~70,000 ^d	~ 8000 ^e

a – LSC 2020 arXiv:2010.14527 b – D. Siegel, et al. 2019 Nature 569, 241 c - S. Prajs, et al. 2017 MNRAS 464, 3 d – W. Li, et al. 2011 MNRAS 412, 3 e - https://sne.space/

3

MGF Intrinsic Rate

As appeared from GRBs 200415A, 051103 and 070222:

SPECTRALLY HARD and HIGHER PEAK ENERGY!

GRB detector are triggered by photon counts: Detectable MGF number is reduced by $\sim x5$ (x > 100 in volume)

Comptonized Spectrum:

$$\frac{dN}{dE} = \left(\frac{E}{100 \ keV}\right)^{\alpha} e^{-(\alpha+2)\frac{E}{E_{peak}}}$$
$$\alpha^{SGRB} \approx -0.4 \qquad \alpha^{MGF} \approx 0$$
$$E_{peak}^{SGRB} \approx 0.6MeV \qquad E_{peak}^{MGF} \approx 1.5MeV$$

0.0030 0.0025 0.0020 $\Phi(E)$ Ш 0.0015 0.0010 0.0005 0.0000

E. Burns et al. (MN). 2021, Published in Ap. J. Letters

Magnetar formation channels

Different formation scenarios could produce magnetars, e.g.:

*** common CCSN**

- * low-mass mergers
- * a rare evolution of white dwarfs
- * collapsars
- * superluminous supernovae (SLSN)

Favored CCSN:

- * Our model favor high SFR (disfavor low-mass mergers)
- * Host galaxies of MGF have high-metallicity (disfavor collapsars and SLSN)
- * Intrinsic rate favors CCSN
- * only CCSN track star-forming regions and have a comparable rate (lat)

Other considerations:

- * some magnetars produce multiple MGFs
- * observational constraints on $f_M > 0.005$

*Beniamini et al. 2019

E. Burns et al. (MN). 2021, Published in Ap. J. Letters

