Measurements of the Energy Spectrum of Ultra-High Energy Cosmic Rays by the Pierre Auger Observatory and the Telescope Array

Douglas Bergman, Olivier Deligny, Francesco Fenu, Toshihiro Fujii, Dmitri Ivanov, Isabelle Lhenry-Yvon, Ioana Maris, Markus Roth, Francesco Salamida, <u>Yoshiki Tsunesada</u>, and Valerio Verzi

BSERVATOR

The Auger-TA Joint Working Group

Auger-TA Joint Working Group Activities

0. UHECR2010 (Nagoya): Proposed the idea of joint working groups

- 1. UHECR2012 (CERN): First WG joint talk Y. Tsunesada
- 2. UHECR2014 (Springdale) I. Maris
- 3. UHECR2016 (Kyoto) V. Verzi
- 4. ICRC2017 (Busan) D. Ivanov
- 5. UHECR2018 (Paris) D. Ivanov
- 6. ICRC2019 (Madison) O. Deligny
 - UHECR2020 (Moscow) Postponed
- 7. ICRC2021 (Berlin/Online) This talk

ROYECTO PIERRE AUGER AREA NIHUIL

Auger and TA

- Hybrid detectors: Fluorescence detectors (FD) and Surface Detectors (SD)
- FD: the longitudinal development, calorimetric measurement, 10% duty cycle
- SD: ~100% duty cycle -> Use SD data for spectrum study
- Energy calibration
 - Pick up hybrid events triggered by both FD and SD
 - Compare the FD energy E_{FD} and an SD energy estimator S
 - Use the formula $E(S, \theta)$ for all the SD events

Air shower footprints by Auger and TA SD arrays

SD Energy Estimators: S1000 and S800

Auger: shower attenuation: S1000 -> S₃₈

- Attenuation curve obtained by the constant-intensity cut (CIC) method - free from shower Monte-Carlo
- S₃₈ has a good linear correlation between E_{FD}
- Formula $E(S_{38})$ is applied to all the SD events

TA: Energy look-up table (S800, θ) -> E

 E_{SD} - E_{FD} Correlation

Auger & TA Energy Spectrum

10

Auger & TA Energy Spectrum (energy ±4.5% rescaled)

11

The Common Declination Band

- Auger: 35°S
 - \circ θ up to 60°
- TA: 39°N
 - \circ θ up to 55°
- Common declination band
 - \circ -15° < δ < 24.8°

Common declination band spectrum

13

Auger & TA Energy Spectrum (whole sky)

(same as page 11)

14

Common band spectrum (shift + E-dependent shift)

Bin migrations/Spectrum unfolding

- Finite energy resolution / Finite bin width
- Asymmetric net effects even in symmetric migration in *E*³ spectrum
- Energy distribution dN/dE must be somehow "unfolded" to calculate $dI/dE = (1/\omega) dN/dE$
- Auger: A forward folding method using the geometrical exposure, shower physics and detector response, and an energy spectrum fitting function (JCAP 04 038 (2017), PRD 102 062005 (2020))
- TA: Evaluate the exposure ω(E) as a function of energy by shower MC + detector response, assuming a previously measured spectrum

Spectrum unfolding

Impact of the Fluorescence Yield Model

- Auger: AirFly result (*Astropart. Phys.* **42** 90 2013, 3.6% uncertainty)
- TA: Kakimoto et al. (*NIM-A*, **372** 527 1996, 11% uncertainty) + FLASH spectrum
- 14% difference

New Feature in the Energy Spectrum

Auger PRL 125 121106 (2020), PRD 102 062005 (2020)

$$\frac{dI}{dE} = I_0 \left(\frac{E}{10^{18.5} eV}\right)^{-\gamma_1} \prod_{j=1}^3 \left[1 + \left(\frac{E}{E_{ij}}\right)^{1/\omega_{ij}}\right]^{(\gamma_i - \gamma_j)\omega_{ij}}$$
• 2-step softening after the ankle
• No dependence on θ and δ
• $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$

New Feature in the Energy Spectrum - TA Case

- Combining HiRes-1, TA SD, and TA FD, a two-step softening exists in the northern heisphere data.
 - 5.3σ deficit above 10^{19.25}eV from an assumption of no breaks before the high-energy steepening

Parameter	Auger	TA
γ_1	3.29 ± 0.02	3.23 ± 0.01
γ_2	2.51 ± 0.03	2.63 ± 0.02
γ_3	3.05 ± 0.05	2.92 ± 0.06
γ_4	5.1 ± 0.3	5.0 ± 0.4
$E_{\rm ankle}/{\rm EeV}$	5.0 ± 0.1	5.4 ± 0.1
$E_{\rm instep}/{\rm EeV}$	13 ± 1	18 ± 1
$E_{\rm cut}/{\rm EeV}$	46 ± 3	71 ± 3

TA SD (2019) outside of BR / LR Obs. Period

Summary

- Update the Auger and TA spectrum comparisons
- Absolute energy scale difference 9%
- Better agreement in the common declination band -15° < δ < 24.8°
 - Even better if an energy-dependent shift of 10%/decade added
- The new spectral feature: "instep"
 - 2-step softening after ankle (Auger *PRL*, *PRD* 2020)
 - Confirmed in the northern hemisphere data (TA SD, FD and HiRes-1)
- Future prospects
 - Highest energy difference, Statistics? Energy-dependent shift?
 - Astrophysical interpretation of the spectral feature
 - TAx4 spectrum, AugerPrime data
 - Extension to lower energies (TALE FD, TALE SD, HEAT, etc.)