

Neutrino mass ordering determination through combined analysis with JUNO and KM3NeT/ORCA

João Pedro A. M. de André^{1*}, Nhan Chau^{2‡}, Marcos Dracos¹, Leonidas N. Kalousis¹, Antoine Kouchner², Véronique Van Elewyck² for the KM3NeT Collaboration and members of the JUNO Collaboration ²APC CNRS/IN2P3, Paris, France ¹IPHC CNRS/IN2P3, Strasbourg, France [‡]nchau@apc.in2p3.fr *jpandre@iphc.cnrs.fr

KM3NeT/ORCA overview [1, T1245]

- KM3NeT detector located in Mediterranean sea ► Water Cherenkov detector arrays
- ORCA: "low-energy" array for oscillation studies Detect atmospheric neutrinos in GeV energy range
- NMO obtained from Earth matter effects
- Neutrino sample divided in 3 PID classes
- Track-like (ν_{μ} CC) to Shower-like (ν_{e} CC + ν NC)
- Detector being installed gradually until 2025

ORCA systematics

Table: Baseline and optimistic scenarios for the treatment of systematics considered in the ORCA analysis. Baseline scenario Optimistic scenario Daramatar

Farameter	Dasenne scenario	Optimistic scenario
PID-class norm. factors	free	X
Effective area scale	×	10% prior
Detector energy scale	5% prior	×
Flux energy scale	×	10% prior
Flux $ u_e/ar{ u}_e$ skew	7% prior	
Flux $ u_{\mu}/ar{ u}_{\mu}$ skew	5% prior	
Flux $\nu_e/\bar{ u}_\mu$ skew	2% prior	
Flux spectral index	free	
NC normalization	10% prior	

Results

Figure: NMO sensitivity as a function of the true θ_{23} value for 6 years of data taking for only JUNO (red), only ORCA (blue), and the combination of JUNO and ORCA (green). The vertical lines indicate the global best-fit values used in this analysis (from Ref. [3]).

Conclusions

- Combination power relies on tension between best-fit of Δm_{31}^2 in "wrong ordering" between JUNO and ORCA
- Systematic errors impacting combined analysis different from stand-alone analyses

- Combined analysis
- Different neutrino sources and energy
- Different detection medium and methods
- However, not all oscillation parameters are shared...
- δ_{CP} and $\theta_{23} \rightarrow$ no impact on JUNO
- \star In ORCA, fit done twice, each time with θ_{23} starting in a different octant
- Δm_{21}^2 and $\theta_{12} \rightarrow$ negligible impact on ORCA
- ★ Parameters also precisely determined by JUNO
- Δm_{31}^2 and $\theta_{13} \rightarrow$ both JUNO and ORCA sensitive to them
- \star However, worse precision on θ_{13} than from current experiments \Rightarrow Prior added on θ_{13} from Ref. [3]
- Perform grid scan on Δm_{31}^2 and θ_{13}
- ▶ In each point, compute separately χ^2 from JUNO and ORCA • Asimov data set used to compute χ^2

 $\chi^2(\Delta m_{31}^2, \theta_{13}) = \chi^2_3$

JUNO overview [2, T1209]

True Normal Ordering (test NO)

2.5

True Normal Ordering (test IO)

-2.7 -2.6 -2.5 -2.4 -2.3

Figure: $\overline{\Delta \chi^2}$ profile for only JUNO (red),

only ORCA (blue), and the combination

data taking assuming baseline (solid) or

optimistic (dashed) systematics.

of JUNO and ORCA (green) for 6 years of

2.6 2.7

 $\Delta m_{31}^2 [\times 10^{-3} \, eV^2]$

²reliminary

 $\Delta m_{31}^2 [\times 10^{-3} \text{ eV}^2]$

150 -

100

50

100

50

2.3

2.4

JUNO in this study

• Systematic errors from JUNO and ORCA not correlated

 \Rightarrow Only oscillation parameters "shared" between JUNO and ORCA

 $\rightarrow \chi^2$ separately profiled over systematic errors and other oscillation parameters

$$G_{\text{UNO}}(\Delta m_{31}^2, heta_{13}) + \chi^2_{\text{ORCA}}(\Delta m_{31}^2, heta_{13}) + rac{\left(\sin^2 heta_{13} - \sin^2 heta_{13}^{\text{GF}}
ight)^2}{\sigma^2_{\sin^2 heta_{13}}}$$

• Central value of oscillation parameters from best-fit of Ref. [3]

• Result robust regarding JUNO energy resolution

• However, non negligible impact from treatment of ORCA energy scale systematics • For NO with current best fit, 5σ NMO determination reached in only 2 years • NMO determination $\mathbf{05}\sigma$ with 6 years of data for any oscillation parameter

Figure: NMO sensitivity as a function of time for only JUNO (red), only ORCA (blue), and the combination of JUNO and ORCA (green), considering a better (dashed) and worse (dotted) energy resolution for JUNO than the nominal one (solid) by $\pm 0.5\%/\sqrt{E/\text{MeV}}$.

References
[1] S. Adrian-Mart
[2] F. An <i>et al.</i> [J
[3] I. Esteban <i>et a</i>
Related presenta
[T1209] J. P. A. M
[T1245] M. Perrin-
the neutrino m

• JUNO detector located in south east of China

• At 53 km from Yangjiang and Taishan Nuclear Power Plants (NPP) • Detect reactor $\bar{\nu}_e$ at few MeV energy range via IBD

► NMO from fast oscillations, not relying in matter effects

• JUNO energy resolution: $3\%/\sqrt{E/MeV}$ Energy resolution critical for NMO determination

• Data taking to start in 2022

JUNO

• JUNO modeling following Ref. [2] ► Syst. error on reactor spectrum, detector response Backgrounds rate, shape, and uncertainties Detector mass, distance and power of NPPs

• Only 2 reactor cores @ Taishan considered ▶ Ref. [2] considered 4 cores @ Taishan ▶ 2 cores @ Taisahn already build ► However, plan for adding last 2 cores uncertain

• Nominal $3\%/\sqrt{E/MeV}$ energy resolution assumed From JUNO studies, nominal resolution achievable Impact of significantly worse resolution studied

Figure: Expected event distribution for 6 years of data with JUNO. True NO and oscillation parameters from Ref. [3] are assumed

tinez *et al.* [KM3NeT Collaboration], J. Phys. G **43** (2016) no.8, 084001 [1601.07459]. JUNO Collaboration], J. Phys. G **43** (2016) no.3, 030401 [1507.05613]. *al.* JHEP **01** (2019), 106 [1811.05487].

tions **@ICRC**

1. de André *et al.* [JUNO Collaboration] "JUNO Physics Prospects" -Terrin *et al.* [KM3NeT Collaboration] "Sensitivity of the KM3NeT/ORCA detector to nass ordering and beyond"