

Neutrino mass ordering determination through combined analysis with JUNO and KM3NeT/ORCA

João Pedro A. M. de André^{1*}, Nhan Chau^{2†}, Marcos Dracos[‡], Leonidas N. Kalousis[‡], Antoine Kouchner², Véronique Van Elewyck² for the KM3NeT Collaboration and members of the JUNO Collaboration IPHC CNRS/IN2P3, Strasbourg, France ²APC CNRS/IN2P3, Paris, France

KM3NeT/ORCA overview [1 T1245]

Parameter

Effective area scale

Detector energy scale

Flux energy scale

Flux u./ū. skew

Flux v../P. skew

Flux $\nu_a/\bar{\nu}_c$ skew

Flux spectral index

NC normalization

True Normal Ordering

MM3NeT detector located in Mediterranean sea Water Cherenkov detector arrays

Table: Baseline and optimistic scenarios for the treatment of systematics considered in the ORCA analysis.

5% prior

- a ORCA: "low-energy" array for oscillation studies Detect atmospheric neutrinos in GeV energy range NMO obtained from Earth matter effects
- Track-like (ν, CC) to Shower-like (ν, CC + ν NC)
- a Detector being installed gradually until 2025

10% prior

10% prior

True Inverted Ordering

Baseline scenario Optimistic scenario

7% prior

5% prior

2% prior

free

10% prior

Neutrino sample divided in 3 PID classes

Combined analysis

- Systematic errors from JUNO and ORCA not correlated Different neutrino sources and energy
- Different detection medium and methods
- ⇒ Only oscillation parameters "shared" between JUNO and ORCA
- A However, not all oscillation parameters are shared • δ_{CP} and $\theta_{23} \rightarrow$ no impact on JUNO
- In ORCA, fit done twice, each time with θ₂₄ starting in a different octant
- Δm², and θ₁₂ → negligible impact on ORCA · Parameters also precisely determined by ILINO
- Am², and θ_{cc} → both IUNO and ORCA sensitive to them
- However, worse precision on θ₁₃ than from current experiments ⇒ Prior added on θω from Ref. [3]
- Perform grid scan on Δm_{11}^2 and θ_{12}
- In each point, compute separately v2 from IUNO and ORCA
- Asimov data set used to compute v²
- v² separately profiled over systematic errors and other oscillation parameters Figure: $\overline{\Delta v^2}$ profile for only JUNO (red).

$$\chi^2(\Delta m_{31}^2,\theta_{33}) = \chi^2_{A000}(\Delta m_{31}^2,\theta_{13}) + \chi^2_{ORCA}(\Delta m_{31}^2,\theta_{13}) + \frac{(\sin^2\theta_{13} - \sin^2\theta_{13}^2)^2}{\sigma_{ab}^2\theta_{13}^2} + \frac{[\sup_{\alpha} \Delta_{\gamma}^2]^2}{[\sup_{\alpha} \Delta_{\gamma}^2]^2} + \frac{[\sup_{\alpha} \Delta_{\gamma}$$

a Central value of oscillation parameters from best-fit of Ref. [3]

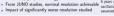
IUNO overview [2 T1209]

True Normal Ordering (test NO)

True Normal Ordering (test IO)

optimistic (dashed) systematics.

- a IUNO detector located in south east of China
- a At 53 km from Yangijang and Taishan Nuclear Power Plants (NPP) Detect reactor \(\bar{\ell}\). at few MeV energy range via IBD
- · NMO from fast oscillations, not relying in matter effects
- a IUNO energy resolution: 3%/, F/MeV - Energy resolution critical for NMO determination
- a Data taking to start in 2022 JUNO in this study



JUNO modeling following Ref. [2]

- Syst error on reactor spectrum, detector response Backgrounds rate, shape, and uncertainties
- Detector mass, distance and power of NPPs
- a Only 2 reactor cores @ Taishan considered
- Ref. [2] considered 4 cores @ Taishan 2 cores @ Taisahn already build

True Normal Ordering

- However, plan for adding last 2 cores uncertain
- Nominal 3%/√E/MeV energy resolution assumed

oscillation parameters from Ref. [3] are True Inverted Ordering

ORCA systematics

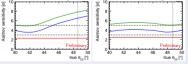
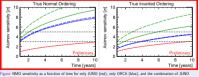
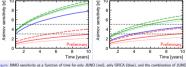




Figure: NMO sensitivity as a function of the true θ_{23} value for 6 years of data taking for only JUNO (red), only ORCA (blue), and the combination of JUNO and ORCA (green). The vertical lines indicate the global best-fit values used in this analysis (from Ref. [3])

and ORCA (green), assuming baseline (solid) or optimistic (dashed) systematics

and ORCA (green), considering a better (dashed) and worse (dotted) energy resolution for JUNO than the nominal one (solid) by ±0.5% / E/MeV.

Conclusions

- a Combination power relies on tension between best-fit of Δm_{2}^{2} , in "wrong ordering" between JUNO and ORCA
- Systematic errors impacting combined analysis different from stand-alone analyses
- Result robust regarding JUNO energy resolution
- However, non negligible impact from treatment of ORCA energy scale systematics For NO with current best fit. 5σ NMO determination reached in only 2 years
- NMO determination 05σ with 6 years of data for any oscillation parameter

[1] S. Adrian-Martinez et al. [KM3NeT Collaboration]. J. Phys. G 43 (2016) no.8. 084001 [1601.07459].

- [2] F. An et al. [JUNO Collaboration], J. Phys. G 43 (2016) no.3, 030401 [1507.05613].
- [3] J. Esteban et al. JHEP 01 (2019), 106 [1811 05487]. Related presentations (BICRC)
- IT1209 J. P. A. M. de André et al. IJUNO Collaboration "JUNO Physics Prospects"

IT1245] M. Perrin, Terrin et al. IKM3NeT Collaboration] "Sensitivity of the KM3NeT/ORCA detector to the neutrino mass ordering and beyond"

Neutrino mass ordering determination through combined analysis with JUNO and KM3NeT/ORCA

João Pedro A. M. de André^{1*}, Nhan Chau^{2†}, Marcos Dracos[‡], Leonidas N. Kalousis[‡], Antoine Kouchner², Véronique Van Elewyck² for the KM3NeT Collaboration and members of the JUNO Collaboration IPHC CNRS/IN2P3, Strasbourg, France ²APC CNRS/IN2P3, Paris, France Combined analysis

True Normal Ordering

True Inverted Ordering

- Systematic errors from JUNO and ORCA not correlated
- Different neutrino sources and energy
- . Different detection medium and methods ⇒ Only oscillation parameters "shared" between JUNO and ORCA
- A However, not all oscillation parameters are shared • δ_{CP} and $\theta_{23} \rightarrow$ no impact on JUNO
 - In ORCA, fit done twice, each time with θ₂₀ starting in a different octant Δm², and θ₁₂ → negligible impact on ORCA
 - · Parameters also precisely determined by ILINO
 - Am², and θ_{cc} → both IUNO and ORCA sensitive to them
 - However, worse precision on θ₁₃ than from current experiments
- ⇒ Prior added on θω from Ref. [3] • Perform grid scan on Δm_{11}^2 and θ_{12}
- In each point, compute separately v2 from IUNO and ORCA
- Asimov data set used to compute v²
- v² separately profiled over systematic errors and other oscillation parameters

 $(\sin^2\theta_{13} - \sin^2\theta_{13}^{GF})^2$

a Central value of oscillation parameters from best-fit of Ref. [3]

only ORCA (blue), and the combination of ILINO and ORCA (green) for 6 years of data taking assuming baseline (solid) or optimistic (dashed) systematics.

True Normal Ordering

True Inverted Ordering

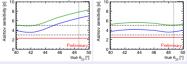
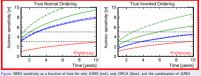
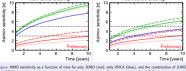




Figure: NMO sensitivity as a function of the true θ_{23} value for 6 years of data taking for only JUNO (red), only ORCA (blue), and the combination of JUNO and ORCA (green). The vertical lines indicate the global best-fit values used in this analysis (from Ref. [3])

and ORCA (green), assuming baseline (solid) or optimistic (dashed) systematics

and ORCA (green), considering a better (dashed) and worse (dotted) energy resolution for JUNO than the nominal one (solid) by ±0.5% / E/MeV.

Conclusions

- a Combination power relies on tension between best-fit of
- Δm_{2}^{2} , in "wrong ordering" between JUNO and ORCA
- Systematic errors impacting combined analysis different from stand-alone analyses
- Result robust regarding JUNO energy resolution
- However, non negligible impact from treatment of ORCA energy scale systematics For NO with current best fit. 5σ NMO determination reached in only 2 years
- NMO determination 05σ with 6 years of data for any oscillation parameter

S. Adrian-Martinez et al. [KM3NeT Collaboration], J. Phys. G 43 (2016) no.8, 084001 [1601.07459].

- [2] F. An et al. [JUNO Collaboration], J. Phys. G 43 (2016) no.3, 030401 [1507.05613]. [3] J. Esteban et al. JHEP 01 (2019), 106 [1811 05487].
- Related presentations (BICRC) the neutrino mass ordering and beyond"
- IT1209 J. P. A. M. de André et al. IJUNO Collaboration "JUNO Physics Prospects" IT1245] M. Perrin, Terrin et al. IKM3NeT Collaboration] "Sensitivity of the KM3NeT/ORCA detector to

Neutrino mass ordering determination through combined analysis with JUNO and KI

João Pedro A. M. de André¹*, Nhan Chau²†, Marcos Dracos¹, Leonidas N. Kalousis¹, Antoine Kouchner², Véronique Van Elewyck² for the KM3NeT Co IPHC CNRS/IN2P3, Strasbourg, France APC CNRS/IN2P3, Paris, France

KM3NeT/ORCA overview [1 T1245]

- KM3NeT detector located in Mediterranean sea Water Cherenkov detector arrays
 - a ORCA: "low-energy" array for oscillation studies Detect atmospheric neutrinos in GeV energy range NMO obtained from Earth matter effects
 - Neutrino sample divided in 3 PID classes Track-like (ν, CC) to Shower-like (ν, CC + ν NC)
 - a Detector being installed gradually until 2025

Table: Baseline and optimistic scenarios for the treatment of systematics considered in the ORCA analysis.

Farameter	Daseline scenario	Optimistic scenario
PID-class norm. factors	free	×
Effective area scale	×	10% prior
Detector energy scale	5% prior	×
Flux energy scale	×	10% prior
Flux $\nu_e/\bar{\nu}_e$ skew	7% prior 5% prior 2% prior free	
Flux $\nu_{\mu}/\bar{\nu}_{\mu}$ skew		
Flux $\nu_e/\bar{\nu}_\mu$ skew		
Flux spectral index		
MC normalization	10% prior	

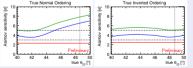
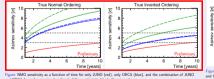
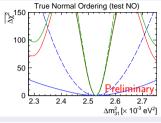



Figure: NMO sensitivity as a function of the true θ_{23} value for 6 years of data taking for only JUNO (red), only ORCA (blue), and the combination of JUNO and ORCA (green). The vertical lines indicate the global best-fit values used in this analysis (from Ref. [3])


and ORCA (green), assuming baseline (solid) or optimistic (dashed) systematics

Conclusions

- a Combination power relies on tension between best-fit of Δm_{2}^{2} , in "wrong ordering" between JUNO and ORCA
- Systematic errors impacting combined analysis different from stand-alone analyses
- Result robust regarding JUNO energy resolution
- However, non negligible impact from treatment of ORCA energy scale systematics

For NO with current best fit. 5σ NMO determination reached in only 2 years

NMO determination 05σ with 6 years of data for any oscillation parameter

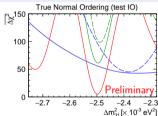
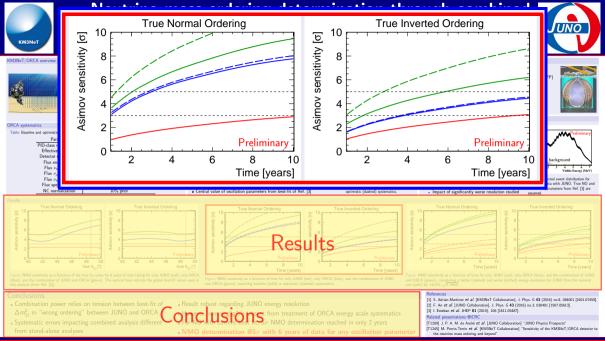



Figure: $\overline{\Delta x^2}$ profile for only JUNO (red). only ORCA (blue), and the combination of JUNO and ORCA (green) for 6 years of data taking assuming baseline (solid) or optimistic (dashed) systematics.

the neutrino mass ordering and beyond

