

Indirect search for dark matter in the Galactic Centre with IceCube

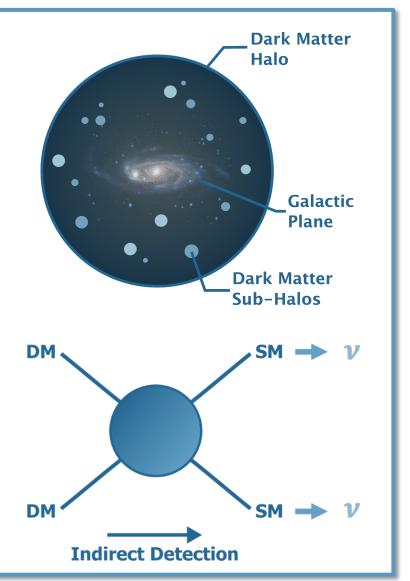
Nadège Iovine and Juan Antonio Aguilar Sánchez for the IceCube Collaboration

Dark Matter Phenomenology

Dark matter halo

Milky Way surrounded by dark matter halo

→ Highest DM density expected towards the Galactic Centre


Indirect search

SM particles are expected to be produced by DM decay or annihilation

→ Look for neutrinos produced by DM annihilation in the centre of the Milky Way with IceCube

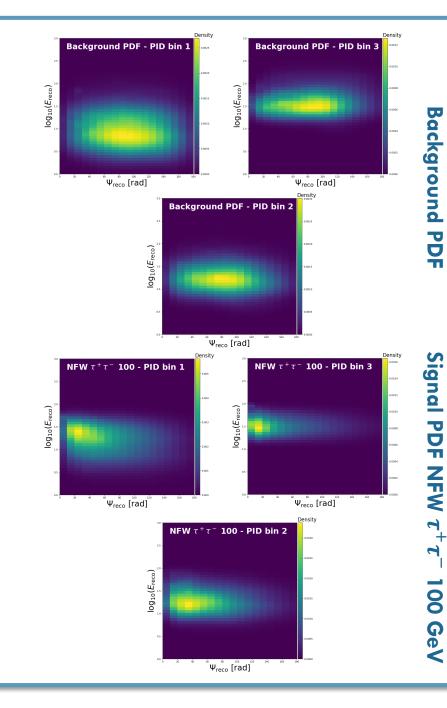
Expected neutrino flux from DM annihilation in the GC:

$$\frac{\mathrm{d}\phi_{\nu}}{dE_{\nu}} = \frac{1}{2} \frac{\langle \sigma_{A} v \rangle}{4\pi \, m_{\mathrm{DM}}^{2}} \, \frac{dN_{\nu}}{dE_{\nu}} \quad \int_{0}^{\Delta\Omega} d\Omega \, \int_{l.o.s} \rho_{\mathrm{DM}}^{2}(r(\Psi, l)) dl \quad [1]$$

Event selection consists of 8.03 years of DeepCore data recorded from 2012 to 2020

Use 3-dimensional PDFs with the

- Opening angle to the GC: Ψ_{reco}
- Energy: E_{reco}
- Neutrino flavour: PID


Background PDF

Monte Carlo (MC) simulations weighted according to the expected atmospheric flux

Signal PDFs

Generic MC weighted source morphology and annihilation spectra according to Eq. 1 where:

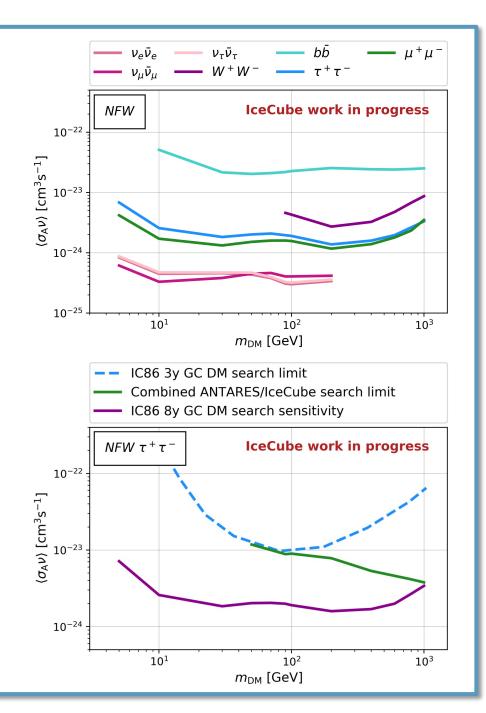
- DM halo profile: NFW and Burkert
- DM annihilation channel: W^+W^- , $b\bar{b}$, $v_i\bar{v}_i$, $\tau^+\tau^-$, $\mu^+\mu^-$
- DM mass: 5 GeV to 1 TeV

Sensitivities

Binned likelihood method method assuming the likelihood function:

$$\mathcal{L}(\mu) = \prod_{i=min}^{max} \frac{(n_{obs}^{tot} f^{i}(\mu))^{n_{obs}^{i}}}{n_{obs}^{i}!} e^{-n_{obs}^{tot}} f^{i}(\mu),$$
 [2]

where


$$f(i;\mu) = \mu f_S(i) + (1-\mu) f_{BG}(i),$$
 [3]

Upper limit on signal fraction at 90% CL, μ_{90} , computed according to the likelihood interval method

Sensitivity defined as median value of the 90%CL upper limits obtained for 100,000 pseudo-experiments sampled from the background-only PDF

Sensitivities show considerable improvement with respect to:

- IC86 3y GCWIMP search [1]
- Combined ANTARES/IceCube search [2]

Conclusion

- ullet Computed **sensitivities on** $\langle \sigma_A v \rangle$ for a dark matter search in the Galactic Centre with 8 years of IceCube data
- Sensitivities show considerable improvements with respect to previous IceCube results
- Improvement of the sensitivities due to:
 - Data set: more years of data and enhanced event selection
 - Additional information in PDFs:
 Energy and flavour information

Outlooks

- The final official results should soon be available
- If no signal neutrinos were to be found, limits on $\langle \sigma_A v \rangle$ will be computed