Electromagnetic Shower Simulation for CORSIKA 8

Jean-Marco Alameddine, Jaime Alvarez-Muñiz, Juan Ammerman-Yebra, Lars Bollmann, Wolfgang Rhode, Maximilian Sackel, Alexander Sandrock, Jan Soedingrekso, Enrique Zas

technische universität dortmund

- CORSIKA is the leading framework used to simulate extensive air showers
- CORSIKA 8: Complete rewrite in C++17 which is currently under development
 - \rightarrow flexibility
 - → modularity
 - ightarrow state-of-the art code base
 - \rightarrow gitlab.ikp.kit.edu/AirShowerPhysics/corsika

 \rightarrow For more about the development of CORSIKA 8, see for example the contribution "Status of the novel CORSIKA 8 air shower simulation framework"

- In previous CORSIKA versions, the EM shower component is simulated using **EGS4**
 - ightarrow Fortran code released in early eighties
- Requirements for EM interaction model for CORSIKA 8:
 - ightarrow Modern and actively maintained code
 - ightarrow Up-to-date physics parametrizations
 - \rightarrow Customizable

Source: PoS ICRC2015 (2016) 304

What is **PROPOSAL**?

- PROPOSAL: Software library to propagate high-energy leptons and photons
- Written in C++14, callable from Python as well
 - → Try:pip install proposal
- Customizable for wide range of applications
 - → Selection of different parametrizations for each physical process
- Actively maintained
 - → Visit our GitHub: https://github.com/ tudo-astroparticlephysics/PROPOSAL

PROPOSAL

 \rightarrow Provides cross sections

→ Provides propagation utilities

$$\lambda = \left(\int \frac{\mathrm{d}\sigma}{\mathrm{d}v} \,\mathrm{d}v\right)^{-1}$$

CORSIKA 8

→ Provides shower simulation framework

 \rightarrow For more about the modules in PROPOSAL, see J. Phys. Conf. Ser. 1690, 012021 (2020)

- Goal: Validate current status of CORSIKA 8 (version tagged icrc-2021)
 - → Compare electromagnetic shower component in CORSIKA 8 with other frameworks

CORSIKA 7

- \rightarrow Predecessor of CORSIKA 8
- → Version 7.7410

ZHS MC

- \rightarrow Code to simulate electromagnetic showers in homogeneous media (10.1103/PhysRevD.45.362)
- \rightarrow Version 2006 Multimedia

AIRES

- ightarrow Tool to simulate full particle showers (10.13140/RG.2.2.12566.40002)
- → Version **19.04.00**

Comparison of theoretical descriptions

	CORSIKA 8	CORSIKA 7	ZHS MC	AIRES
bremsstrahlung	Koch & Motz	Koch & Motz	Stanev & Vankov	Rossi & Greisen
pair production	Tsai	Koch & Motz	Stanev & Vankov	Rossi & Greisen
ionization	Berger & Seltzer	Berger & Seltzer	Berger & Seltzer	(Fit to GEANT3)
photohadronic	×	\checkmark	×	(🗸)
scattering	Highland	Highland + Stochastic	Highland	Highland + Coulomb

 \rightarrow See our proceeding for all comparisons

Simulation parameters

- \rightarrow Statistics of 200 showers
- $\rightarrow\,$ Simulations in inhomogeneous air for CORSIKA 8, CORSIKA 7 and AIRES
- ightarrow Simulations in homogeneous air for CORSIKA 8, AIRES and ZHS
- → Particle threshold: 4 MeV
- → Energy loss cut: 2 MeV
 - ⇒ All frameworks have been adjusted to conform with these settings (except CORSIKA 7 energy loss cuts)

Longitudinal shower development

shower maximum for ZHS shifted towards larger depths

Longitudinal shower development

- agreement of C7, C8 and AIRES within 5 % at the shower maximum
- Possible differences in cross sections

Longitudinal development of the charge excess

- Charge excess: $\frac{N_{e^-} N_{e^+}}{N_{e^-} + N_{e^+}}$
- Effect caused by ionization, annihilation and Compton scattering
- Relevant for radio emission in air showers
- Effect clearly visible and consistent for all frameworks

Lateral shower development

- Simulation in inhomogeneous atmosphere, observation level set to X_{max} (8600 m)
- Distribution for CORSIKA 8 shifted towards the shower axis

Lateral shower development

- Simulation in homogeneous atmosphere, observation level set to X_{max}
- Distribution for CORSIKA 8 shifted towards the shower axis
 - ightarrow Scattering description in CORSIKA 8 not yet complete

Track lengths

- Observable: Summed length of all e⁻ and e⁺ tracks
- Shapes of distributions agree

CORSIKA 8

CORSIKA 7

Track lengths

- Observable: Projected excess track length
- → Sum of e⁻ track lengths minus sum of e⁺ track lengths, each projected onto shower axis
- Important quantity for radio emission in air showers
- Displacement of distributions visible

AIRES

Track lengths

- Observable: Projected excess track length
- Simulation in homogeneous air

Summary

- First systematic comparisons of the EM shower component simulated in CORSIKA 8
 - ightarrow First results are promising
 - ightarrow Most observed differences are within a 10 % range

Outlook

- Investigations of the observed differences
- Improvements for the electromagnetic interaction model in CORSIKA 8
 - \rightarrow Photohadronic interactions
 - \rightarrow LPM effect in inhomogeneous media
 - ightarrow Scattering and deflections
- Further cross checks with other frameworks, also under different conditions (energies, media, cuts, ...)
- Runtime comparisons and optimizations