A NEW BAKSAN LARGE NEUTRINO TELESCOPE: THE PROJECT'S STATUS

Ushakov N.A.

Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia

37th International Cosmic Ray Conference, Berlin, Germany 12–23 July, 2021

Location of the Baksan Neutrino Observatory of INR RAS

Laboratory depth is about 4700 m.w.e.

ICRC 2021

Ushakov N.A., INR RAS

Proposed large volume detector design

The main scientific goals of the detector

- Measurement of geoneutrino fluxes;
- Registration of CNO-neutrinos from the Sun
- Registration of the isotropic flux of antineutrinos accumulated in the Universe as a result of gravitational collapses of the nuclei of massive stars and the formation of neutron stars and black holes;
- Study of the dynamics of a supernova explosion by recording the intensity and spectrum of a neutrino burst in the case of a supernova explosion with a collapsing core at a distance of up to 200 kpc;
- Registration of the total flux of antineutrinos from all nuclear power reactors on Earth;

Project stages

The first stage – the construction of a prototype with a liquid scintillator mass of 0.5 t, located in the laboratory of the gallium-germanium neutrino telescope (GGNT) of the BNO INR RAS (**completed**).

The second stage – the construction of a prototype with a mass of a liquid scintillator of 5 t, also located in the GGNT laboratory, for testing the applied scientific and technological methods and approaches (**in progress**).

The third stage – the design and construction of a large-scale prototype with a scintillator mass of 100 t.

The fourth stage – the design, construction and launch of a full-scale detector capable of solving the entire complex of the project's tasks.

ICRC 2021

Measuring detector counting rates

10 simultaneously triggered channels with threshold of ¼ PE

With settled water: 32.5±0.5 Hz.

Without water in the tank: fluctuations in the range of **915-940 Hz** on different days; the influence of ²²²**Rn** in the hall is possible.

After filling the tank with water: exponential decay, with a time constant corresponding to the half-life of ²²²**Rn**.

Muon flux measurement

Twelve 8-inch PMTs Hamamatsu R5912-100 WA-70S for muon system veto

Carbon light concentrators with chrome-plated inner surface

Acrylic spheres with a volume of 5.575 m³ covered with a matte film

Forty-two 10-inch PMTs Hamamatsu R7081-100 WA-70S

> Steel water tank with a volume of 50 m³

0

Measured characteristics of PMTs R5912-100

Pulse duration: ~25 ns **Rise time:** 3.9 ns **Pre-pulse:** ~18 ns **Delayed pulse:** ~46 ns

The SPE pulse waveforms, SPE and TTS distributions with a PMT gain of $\sim 10^7$ and an amplifier gain of 10.

ICRC 2021

Results and perspectives

Completed

- Upgrade of the registration system
- The counting rates of the detector were measured and a shortage of the water purification system was detected
- Pre-measured muon flux: 4.28*10⁻⁹cm⁻²s⁻¹
- The characteristics of twelve 8-inch PMTs R5912-100 for the muon veto system were measured
- The optimal profile of light concentrators was calculated using the string method

In progress

- Calibration of detectors with radioactive sources (¹³⁷Cs, ⁶⁰Co, etc.)
- Measurement of the radioactive background of the detector elements (acrylic, PMTs, light concentrators, etc.)
- Manufacturing and installation of light concentrators
- Development of algorithms and software for signal processing
- Development of a water purification system from ²²²Rn
- Construction of a prototype detector with a target mass of 5 tons
- Purification of 6 t of LAB
- Development of scintillators using new fluors: POPOP, BPO, Bis-MSB and Butyl PBD
- Development of magnetic protection of the detector