July 12th - 23rd, 2021

Combined Dark Matter Search With Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS

<u>CELINE **ARMAND**, ERIC **CHARLES**, MATTIA **DI MAURO**, CHIARA **GIURI**, J. PATRICK **HARDING**, DANIEL **KERSZBERG**,</u> TJARK MIENER, EMMANUEL MOULIN, LOUISE OAKES, VINCENT POIREAU, ELISA PUESCHEL, JAVIER RICO, LUCIA RINCHIUSO, DANIEL SALAZAR-GALLEGOS, KIRSTEN TOLLEFSON, BENJAMIN ZITZER

FOR THE FERMI-LAT, HAWC, H.E.S.S., MAGIC, AND VERITAS COLLABORATIONS

ICRC 2021

INTRODUCTION

DARK85% of the total matter of our UniverseIts identification would reveal new PhysicsMATTERProving its existence and nature would improve our
understanding of the Universe

Combination of the observation results towards dwarf spheroidal galaxies (dSpl

ults	FIVE
hs)	EXPERIMENT:

Combination of the individual results published by each collaboration

Increase the sensitivity to potential dark matter signals

Significant increase of the statistics

INDIRECT SEARCHES

Dark Matter (DM) annihilation

Standard Model particles (bosons, quarks, leptons)

Final state products such as γ rays

INDIRECT SEARCHES

Dark Matter (DM) annihilation

Standard Model particles (bosons, quarks, leptons)

Final state products such as y rays

WHAT ARE DWARF SPHEROIDAL GALAXIES

Fevel
Ult
Lov
No

- Few bright stars Classicals up to 2,500 and Ultrafaints up to a few tens
- Low/no gas, dust, or recent star formation
- DM dominated objects
- No expected astrophysical γ-ray background

Ideal laboratories for DM indirect searches

Source name

Experiments

Bootes I	Fermi-LAT, HAWC, VERITAS
Canes Venatici I	Fermi-LAT
Canes Venatici II	Fermi-LAT, HAWC
Carina	Fermi-LAT, H.E.S.S.
Coma Berenices	Fermi-LAT, HAWC, H.E.S.S., MAGIC
Draco	Fermi-LAT, HAWC, MAGIC, VERITAS
Fornax	Fermi-LAT, H.E.S.S.
Hercules	Fermi-LAT, HAWC
Leo I	Fermi-LAT, HAWC
Leo II	Fermi-LAT, HAWC
Leo IV	Fermi-LAT, HAWC
Leo T	Fermi-LAT
Leo V	Fermi-LAT
Sculptor	Fermi-LAT, H.E.S.S.
Segue I	Fermi-LAT, HAWC, MAGIC, VERITAS
Segue II	Fermi-LAT
Sextans	Fermi-LAT, HAWC
Ursa Major I	Fermi-LAT, HAWC
Ursa Major II	Fermi-LAT, HAWC, MAGIC
Ursa Minor	Fermi-LAT, VERITAS

Twenty Dwarf Spheroidal Galaxies

All previously published by individual collaborations

EIVE EXPERIMENTS

Cover the widest energy range ever investigated

Fermi-LAT Space telescope 20 MeV to 1 TeV

MeV

HAWC 300 water Cherenkov detectors 300 GeV to 100 TeV

VERITAS

4 imaging air Cherenkov telescopes (IACT) 85 GeV to 30 TeV

TeV

H.E.S.S.

5 imaging air Cherenkov telescopes (IACT) 30 GeV to 100 TeV

MAGIC

2 imaging air Cherenkov telescopes (IACT) **30 GeV to 100 TeV**

GeV

COMMON INGREDIENTS

STATISTICAL APPROACH

Many exchanges to homogenize the statistical approach and derive the observed, the mean expected limits, and the uncertainty bands

5

6

DATA SHARING - Use of a common format (TS vs $\langle \sigma v \rangle$)

J FACTOR - Taken from Geringer Sameth et al. (Ref: APJ 801:74 (18pp), 2015)

DM PROFILE - Zhao-Hernquist, generalized DM density distribution

W-, Z+Ζ-, μ+μ-, e+e-, tt, γγ

JOINT LIKELIHOOD ANALYSIS

LOG-LIKELIHOOD RATIO TEST STATISTICS

Global minimization

Constrained minimization

 $\mathscr{L}\left(\langle\sigma v\rangle;\hat{\hat{\nu}}\,|\,\mathscr{D}_{\mathrm{dSphs}}\right)$ $TS = -2\ln\lambda = -2\ln\frac{1}{2}$ \overline{v} ; $\hat{\nu} | \mathcal{D}_{dSphs}$)

2 dSph Data of the dSphs 2.71 for 1-sided 95% Confidence Level TS and 1 degree of freedom

JOINT LIKELIHOOD ANALYSIS

TOTAL LIKELIHOOD = PRODUCT OF INDIVIDUAL LIKELIHOODS

$$\mathscr{L}(\langle \sigma v; \nu | \mathscr{D}_{dSphs}) = \prod_{k=1}^{K=20} \prod_{l=1}^{L=5} \mathscr{L}_{dSph,l}$$
Likeliho

gLike

https://doi.org/10.5281/zenodo.4028908 (2020)

 $_{l,k}\left(\langle \sigma v \rangle; J_{l,k}, \nu_{l,k} | \mathcal{D}_{\mathrm{dSphs}}\right) \mathcal{J}_{k}(J_{k} | \bar{J}, \sigma_{\log_{10} J})$

ood of individual instruments and individual dSphs

J factor nuisance

Combination performed using two independent public analysis softwares

LklCombiner

<u>https://doi.org/10.5281/zenodo.4450884</u> (2021)

NO significant excess found in the data

Expected limits - Sample of **300** Pois produced by individual experiments

Mean expected limits

Mean of the derived $\langle \sigma v \rangle$ distribution

Expected limits - Sample of 300 Poisson realizations of the background events

Statistical uncertainty bands Standard deviation at 1 and 2σ

Combined upper limits are 2-3 times more constraining

Below ~10 TeV - DM limits largely dominated by Fermi-LAT

Below ~1 TeV - DM limits largely dominated by Fermi-LAT

Below ~10 TeV - DM limits largely dominated by Fermi-LAT

Above ~ 10 TeV - IACTs and HAWC contribute significantly

1 Below ~1 TeV - DM limits largely dominated by Fermi-LAT

Above 1 TeV - IACTs and HAWC take over

be observed

Upper limit profiles depend on the choice of the annihilation channel

Upper limits driven by the objects with the highest J factors that can

Ultra-faint dSphs can be subject to large systematic uncertainties for the determination of their J-factors, e.g. Segue I

CONCLUSIONS

- No significant DM signal observed by any of the experiments, nor in the combination
- Use of the likelihood profiling and common ingredients to derive upper limits
- Derivation of upper limits over the widest mass range ever for the DM WIMPs
 - Combined upper limits improved by 2-3 times compared to the individual limits
 - In the future publication:
 - 6 additional channels
 - Analysis with a second set of J factor determinations to study their impact on our upper limits

Fornax - credits: ESO/Digitized Sky Survey 2

THANKS FOR YOUR ATTENTION!

	Fermi-LAT	HAWC	H.E.S.S, MAGIC,	
Source name	Exposure (10^{11} sm^2)	$ \Delta \theta $ (°)	IACT	Zenith (°)
Boötes I	2.6	4.5	VERITAS	15 - 30
Canes Venatici I	2.9	14.6	_	_
Canes Venatici II	2.9	15.3	_	_
Carina	3.1	—	H.E.S.S.	27 - 46
Como Boronicos	2.7	4.9	H.E.S.S.	$\bar{47}-\bar{49}$
Collia Berenices			MAGIC	5 - 37
Draco	3.8	38.1	MĀGĪC	$\bar{29}-45$
Diaco			VERITAS	25 - 40
Fornax			H.E.S.S	$\bar{11} - 25$
Hercules	2.8	6.3	—	—
Leo I	2.4	6.7	—	—
Leo II	2.6	3.1	—	—
Leo IV	2.4	19.5	—	_
Leo V	2.4	—	—	—
Leo T	2.6	—	—	_
Sculptor	2.7	—	H.E.S.S.	10 - 46
Seque I	2.5	2.9	MAGIC	13 - 37
Segue I			VERITAS	15 - 35
Segue II				
Sextans	2.4	20.6	_	_
Ursa Major I	3.4	32.9	_	_
Ursa Major II	4.0	44.1	MAGIC	35 - 45
Ursa Minor	4.1	—	VERITAS	35 - 45

All previously published by individual collaborations

Twenty Spheroida Galaxies

