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Neutron Monitors
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Two solar proton fluence models based on ground level
enhancement observations
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Here J(> R) is the omnidirectional event-integrated integral
fluence in units of cm™, J, is an overall fluence normalization
coefficient, y, is the low rigidity power law index, y, the high
rigidity power law index and (y, — y1)Ro = R, is the breakpoint
rigidity. The Band function is constructed in such a way that
both the function and its first derivative are continuous.

recent results
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Fig. 1. Event-integrated proton fluence spectrum for GLE 71. NM
observations are shown in orange, GOES/MEPAD in green, GOES/
HEPAD in red and the Band-fit spectrum in blue.

Table 2. Spectral parameters of GLEs and their ESP counterparts. The uncertainties are estimated by varying the parameter of interest while
holding the other parameters at their best-fit values.

GLE Episode Jo (p/em?) AJy (p/em?) " Ay, Vs Ay, Ry (GV) ARy (GV)
5 1 1.75E4-08 1.59E+07 1.76 0.06 5.04 0.12 5.66E—01 3.49E—02
7 3 7.88E+408 7.96E+07 1.35 0.08 6.08 0.22 1.44E—01 5.50E—03
8 4 8.16E-+05 9.42E+04 1.53 0.08 4.88 0.17 5.85E—01 3.93E-02
9 5 1.24E+08 1.36E+07 0.32 0.08 5.56 0.35 1.41E—01 5.70E—03
10 6 1.22E408 1.41E407 2.76 0.09 6.54 0.14 3.47E—01 1.97E—02
11 6 3 33E+07 4 11TE+06 214 009 700 011 4 3RE—-01 2 RAE—-0?



Why are we decided to update calculations?

1. Method uses prescribed function and finds the best-fit parameters
for it. What if is prescribed function is wrong? - Create the method
of fluence assessment independent from the prescribed SEP
function.

2. Reconstruction uses neutron monitor yield function by Clem and
Dorman (SSR, 2000). Neutron monitor yield function validation
using AMS-02 data showed that this yield function possibly
overestimates the low-energy particles response in neutron
monitor together with Mal6 yield function and Mil3 and CM12
shows better performance during validation. - Use Mi20 yield
function (altitude-dependent!)



GLE integral increase
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From the International GLE database (IGLED,
gle.oulu.fi) we have calculated relative integral

increases from SEP during GLE events in the units of :
relative units of [% * hour] ‘ GCR pre-
increase
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The R4+ method

Let me start from definition:

The “effective” rigidity of a neutron monitor for a ground-level enhancement
(GLE) event is defined so that the event-integrated fluence of solar energetic protons with
rigidity above it is directly proportional to the integral intensity of the GLE as recorded by a
polar neutron monitor, within a wide range of solar energetic-proton spectra.

Solar Phys (2018) 293:110
https://doi.org/10.1007/s11207-018-1326-1
F(>Ret) =Kett NG
where K. is (nearly) constant in the entire

Effective Rigidity of a Polar Neutron Monitor range of realistic GLE proton spectra and Ng;
for Recording Ground-Level Enhancements is an integral NM response to GLE protons.

Sergey A. Koldobskiy'2( - Gennady A. Kovaltsoy? Theoretical NM response can be calculated as:

Ilya G. Usoskin'*
v O N(P.,h) Z/ Y;(R,h) - dR.

where Y; (R, h) is the yield functlon of the NM (located at height h) for primary
cosmic-ray particles of type j (protons, helium, heavier species), and J; is the
differential intensity of primary particles of type j at the Earth’s orbit

Here we used NM vyield function by Mishev et al. (2013,
2020)



The R4+ method

Kot =F(>Ret) / N and K for given R must be 10
constant irrespectively from the SEP fluence function
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First we have tested this method using simple power-
law:

F(>R)=FoR~

and

R [GV]
F(>R)
Kepr(R) = — dF (R)

Jr. —ar
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R.¢ and K as functions of P.and h

P. [GV]

Effective rigidity Reris very close to the geomagnetic
rigidity cutoff P.for low- and mid-latitude locations (P.>
3 GV) but saturates at 1.3—1.5 GV (depending on the
atmospheric depth) for high-latitude sites.
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The value of the Kervaries with the geomagnetic
cutoff depicting a shoulder at high-latitude
locations and a nearly exponential decrease with
P.for low- and mid-latitudes.

These relations is shaped by two different processes, viz. the atmospheric cutoff (particles must possess sufficient
energy of a several hundred MeV to initiate an atmospheric cascade reaching the ground) and the geomagnetic
cutoff (particles must possess sufficient rigidity to be able to enter the atmosphere). While the geomagnetic cutoff
dominates at low- and mid-latitudes, the atmospheric cutoff becomes crucial at high latitudes.
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PAMELA direct measurements are in better
agreement with CM12 and Mi13 yield
function, CD0OO and Ma16 YF possibly
overestimate the NM response in low-
energy region.

This conclusion is in agreement with
conclusions of NM YF validation made with

use of AMS-02 proton and helium monthly
data.
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Increase (%)

Major IGLED update: time-depedent GCR
background
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GLE38 // 08-Dec-1982
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58 strongest GLE evets were analyzed, and
NM-based integral flux points were
reconstructed.
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o
05 23/02/1956 1.06E+8  3.13E+7 2.98E+7 429 0.50 0.52 5.12 4.33 1.64 &
08 04/05/1960  9.34E+5  6.42E+4 2.15E+5 -0.82 1.35 0.00 0.56 0.20 0.00 o
10 12/11/1960  3.03E+7 4.58E+6 3.75E+6 035 0.51 0.79 0.50 0.04 0.06 %
11 15/11/1960 1.95E+7 4.10E+6 4.54E+6 3.89 1.36 0.90 1.01 1.23 0.26 S
12 20/11/1960  3.65E+5 7.07E+5 6.11E+4 575 052 3.26 00 - - %
13 18/07/1961 2.08E+6  2.20E+7 8.51E+5 476 220 5.64 1.38 00 1.12 :
16 28/01/1967 2.28E+6  2.28E+5  2.55E+5 505 0.17 0.71 5.30 1.70 3.00
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Low energy SEP measurements

J. Space Weather Space Clim. 2020, 10, 24
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Very high energy proton peak flux model

Osku Raukunen'”, Miikka Paassilta’, Rami Vainio', Juan V. Rodriguez?, Timo Eronen', Norma Crosby?,
Mark Dierckxsens®, Piers Jiggens®, Daniel Heynderickx®, and Ingmar Sandberg®

For years before 1989, we used fluences from several sources
based on different spacecraft and experiments (King 1974;
Reedy 1977; Goswami et al. 1988; Feynman & Gabriel 1990;
Jun et al. 2007; Webber et al. 2007).

PAMELA measurements for GLE #71
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F(R) = J, (%)_YI exp(

R =72
2 ( 1 GV) exP(

F(R) = J;

R
——) ifR<Rb,

R
——) if R > Ry,

GLE #43 19-Oct-1989

1010 i

108 i

106 ]

104 .

102 .

<4 Usoskin et al., 2020
® This work (GOES-6)

109

100
R (GV)

10?

1010 i

F(>R) (cm™2)

F(>R) (cm™2)

GLE #71 16-May-2012

108 .

106 i

104 .

102 -

4 Usoskin et al., 2020
® Brunoetal., 2018
® This work (GOES-13)

10°

100
R (GV)

GLE #24 04-Aug-1972

L
10t

1010 4

108 .

106 i

104 i

102 4

+
]

Usoskin et al., 2020
King, 1974

Reedy, 1977
Webber et al., 2007

10°

10°
R (GV)

10t




1000
750
F500

Counts

F250

SF 100% x (Fup(R) - Flow(R))
= (#] .

Fup(R) + Flow(R) R.<R<R,
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Conclusion

* “Bow-tie” method of fluence reconstruction was applied to NM data, that
allowed us to reconstruct SEP integral fluxes for 58 strongest GLE events;

* Detrended GLE data allowed to identify Sep signal more precisely (in particular,
for weak events);

* We used GOES satellites data to obtain SEP fluences for period 1989-2017;
* For years before 1989 we used all available low-energy data;

* NM and satellite points were fitted with modified Band function, parameter
uncertainties were carefully evaluated;

* New reconstruction of the strongest SEP events particle fluence create new
basis for different applications, including the production of cosmogenic
isotopes and assessment of radiation doses.



