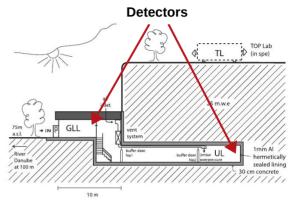


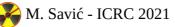
New empirical methods for correction of meteorological effects on cosmic ray muons


There are several well established and widely used methods for correction of atmospheric effects on cosmic ray muons:

- · Method of effective level of generation
- Integral method
- Mass-average temperature method
- Effective temperature method

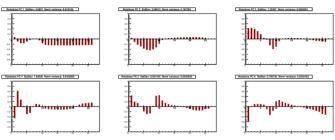
Why do we need to introduce another one?

Integral method is often used as a reference as it is based on the theory of meteorological effects.

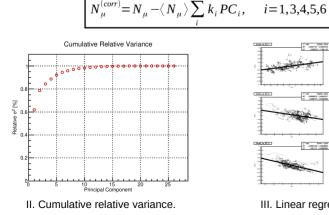

Motivation for introduction of new methods:

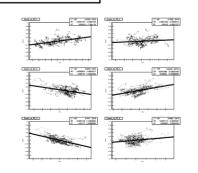
- Improve on the existing empirical methods
- Universal and easy to use
- Not dependent on topology of terrain or laboratory infrastructure
- · Potentially reveal effects not taken into account by theory
- Can be extended to include more atmospheric parameters

Tools:


Modern techniques used for decorrelation and dimensionality reduction of large, highly correlated data sets:

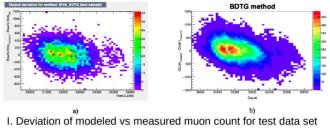
- Principal component analysis (PCA)
- Multivariate analysis utilizing machine learning (MVA)


New empirical methods for correction of meteorological effects on cosmic ray muons

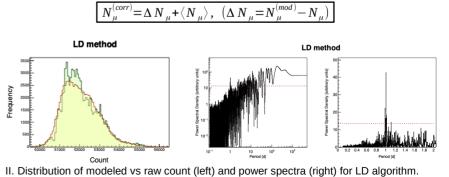


I. Principal component composition (first six components).


PCA method


- Atmospheric pressure + 25 atmospheric temperatures \rightarrow 26 principal components
- II. Set reduced to 6 (5) significant components
- III. Muon count rate corrected using coefficients from linear regression

III. Linear regression fits.



(a) and full data set (b) for BDTG algorithm.

MVA method

- TMVA regression algorithms trained on a train/test subset of data. applied to the whole data set
- II. Predicted output target distributions were tested for consistency (deviation distribution, count distribution, spectral analysis, relative count variation). Best performing algorithms selected (LD, BDTG)
- III. Muon count rate corrected assuming modeled target value contains all the variations due to atmospheric effects

Effect of correction on periodic CR variations (annual variation)

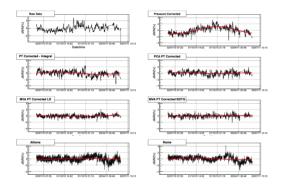


Figure: Time series for period of one year (01.06.2010-31.05.2011) for corrected muon data and reference neutron monitors.

Table: Annual variation amplitude (from sine function fits) and reduction of annual variation relative to pressure corrected data.

Method	P _{corr}	Int.	PCA	LD	BDTG	Ath.	Rome
Amplitude [%]	1.11(9)	0.40(3)	0.18(5)	0.11(3)	0.09(1)	0.17(5)	0.29(1)
Relative reduction [%]	-	64(10)	84(28)	90(30)	92(17)	-	-

Effect of correction on aperiodic CR variations (Forbush decrease)

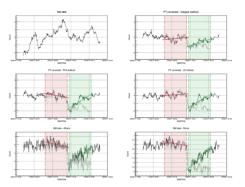
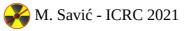



Figure: Time series around the Forbush decrease event in February 2011 for corrected muon data and reference neutron monitors.

Table: Forbush decrease amplitude (determined from above plots) and amplitude relative to the standard deviation of data leading up to decrease.

Method/ NM	Int.	PCA	LD	BDTG	Ath.	Rome
FD Amplitude [%]	1.38(14)	1.52(21)	1.96(18)	1.10(13)	1.97(15)	2.68(15)
Relative FD Amplitude	4.31(44)	4.90(66)	7.09(65)	4.78(56)	5.30(40)	8.65(48)

