

Sensitivity of the KM3NeT/ORCA detector to the neutrino mass ordering and beyond

Mathieu PERRIN-TERRIN On behalf of the KM3NeT Collaboration

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France.

CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE CPPN

https://arxiv.org/abs/2103.09885

- Introduction
- Neutrino Oscillation with KM3NeT-ORCA
- A new kind of long baseline experiment with KM3NeT-ORCA

KM3NeT ORCA

- KM3NeT Collaboration is building two neutrino telescopes in the abyss of the Mediterranean sea
 - ARCA[®] (Italy): TeV → PeV ν
 [6 operational lines]

ORCA[®] (France): 3-100 GeV v [6 operational lines]

- A shared technology: multi PMT modules arranged in detection lines
- Modules and lines spacing set the energy threshold
- Line **deployed furled** from a boat and **unrolled from the sea bed**

(Artist's) View for the water

Neutrinos in KM3NeT-ORCA

- Two typical event topologies
 - TRACK: νµ Charged Current (CC) (+ ντ)
 - **SHOWER**: Neutral Current (NC) and ve-CC (+ ντ hadronic)
- Algorithms trained to **classify events in 3 categories**
 - Track, Shower and Intermediate

5/16

KM3NeT-ORCA Performances

- Performances estimated based on simulations
- Detector effective volume around 5-6 Mm³ (instrumented volume for 115 lines is 6.7 Mm³)
- Energy resolutions at 10 GeV
 ▶ 25 % for ve
 ▶ 35% for vu
- Angular resolution dominated by ν-lepton angle

KM3NeT - M. PERRIN-TERRIN

 Δm_{31}^2

2π 🖌

10

 v_{μ}

NO

IO: matter induces resonance for v

Neutrino Mass Ordering with Atmospherics

- Neutrino mass ordering (NMO)
 - Normal (NO): $m_1 < m_2 < m_3$
 - Inverted (IO): $m_3 < m_1 < m_2$

 $\cos\theta_z$

ICRC - 2021

- Measure NMO using matter effects with atmospheric neutrino oscillation:
 - NO: matter induces resonance for v
 - Net effect on $(v+\overline{v})$ as v cross-section is twice as large as for \overline{v}

NMO Sensitivity

- Oscillation parameters taken from NuFit4.1 Esteban, et al. DOI10.1007/JHEP01(2019)106.
- Syst. uncertainties on oscillation param., ν flux, x-sec, and detector response

Name	Prior	θ ₁₃	0.13°	# ν-up / # ν-horiz	2%	n νμ / n anti-νμ	5%	energy scale	5%
Δm ² ₃₂	free	θ ₂₃	free	# νe / # νμ	2%	ντ cross section	free	had. energy scale	free
δCP	free	Spectral Index	free	# ve / # anti-ve	7%	NC cross section	free	normalisations	free

- With 3 years the NMO determined at
 - **4.4 σ** if NMO = **NO**
 - **2.3** σ if NMO = **IO**

Atmospheric Oscillation Parameters

- Atmospheric neutrino can also be used to measure θ_{23} and Δm^2_{32}
- Assuming 3 years of data and known NMO, the contour would improve a lot with respect to the current ones.

θ_{23} Octant

- Oscillation probabilities are almost degenerated: $P(\theta_{23}) = P(45^{\circ}-\theta_{23})$
- KM3NeT-ORCA can determine the θ_{23} octant

PMNS Unitary

- Testing PMNS unitarity is challenging as it requires significant ντ samples
- ORCA will detect ~3,000 ντ/year originating from ν_{atmos} oscillation: dominantly produced as up-going and between 10-30 GeV

The next step: Protvino to ORCA – P2O

- Use U70 accelerator in Protvino (Russia) to generate a v beam
- Baseline is ~2600 km
 → 1st osc. max. is at 5 GeV
- Allows to measure δCP

KM3NeT - M. PERRIN-TERRIN

The P2O Specificity: neutrino tagging

- All future experiments aim to precisely measure δcp, for which they need
 - large statistics (beam power + large detector)

- very challenging to do better than DUNE or T2HK
- Iow systematics (near detector + x-sec measurements)
- P2O offers an alternative to conventional LBL's

- ORCA huge mass (Mton) allows collect large stat. with modest beam power
- beam line can be instrumented with trackers (TAGGER)
 - v properties precisely known from $\pi \rightarrow \mu v$ kine. for each and all v
 - one-to-one association between $\pi \rightarrow \mu \nu$ and interacting ν

no systematics

Precision to $\delta_{_{CP}}$ at P2O

• **Systematics** on oscillation parameters, cross section & normalisation (free)

θ13 ± 0.15°	ντ ± 10%
θ23 ± 2°	NC ± 5%
$\Delta m^2 31 \pm 5e - 3eV^2$	νe=νμ ± 5%

- Conservative estimates: no PID improvement with respect to atmospheric v was considered
- δ_{CP} precision **stable** over all values
- <8° precision can be achieved!</p>

Precision to $\delta_{_{CP}}$ at P2O

• **Systematics** on oscillation parameters, cross section & normalisation (free)

θ13 ± 0.15°	ντ ± 10%
θ23 ± 2°	NC ± 5%
$\Delta m^2 31 \pm 5e - 3eV^2$	νe=νμ ± 5%

- Conservative estimates: no PID improvement with respect to atmospheric v was considered
- δ_{CP} precision **stable** over all values
- <8° precision can be achieved!</p>
- <5° achievable with larger detectors</p>

Summary and Conclusion

- KM3NeT-ORCA is a **Water Cerenkov v telescope** under construction
 - aim to instrument an effective sea water volume of **5 6** Mm³
- Using **atmos. v** and **matter effects** in the Earth ORCA will be able to
 - determine the neutrino mass ordering
 - improve on the θ_{23} and Δm^2_{23} contour
 - determine the θ_{23} octant
 - constrain the PMNS unitarity using ντ
- In the future ORCA could be operated as far detector of LBL from Protvino
 - huge mass allows to develop new LBL concept: tagged beam
 - unprecedented precision on δcp