

Content

Page 2-28 Sustainability of / for / in science an introduction

Knud Jahnke, Max Planck Institute for Astronomy, Heidelberg, Germany

Page 29-47 Climate Crisis & Academic Travel

Victoria Grinberg, (ESA/ESTEC - here as private person!)

Page 48-67 Energy Efficient Computing

Prof. Dr. Volker Lindenstruth, FIAS, IfI, LOEWE Professur, Chair of HPC Architecture,

University Frankfurt, Germany

Page 68-82 Green Experiments? A case study for KM3NeT

Christos Markou, Institute of Nuclear and Particle Physics, NCSR 'Demokritos', Athens, GR

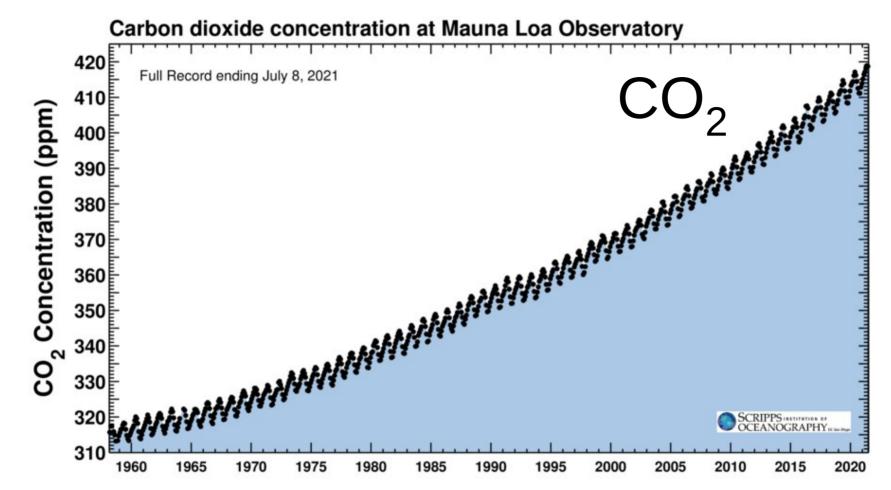
LOC Institutes and Organisations

Sustainability of / for / in science

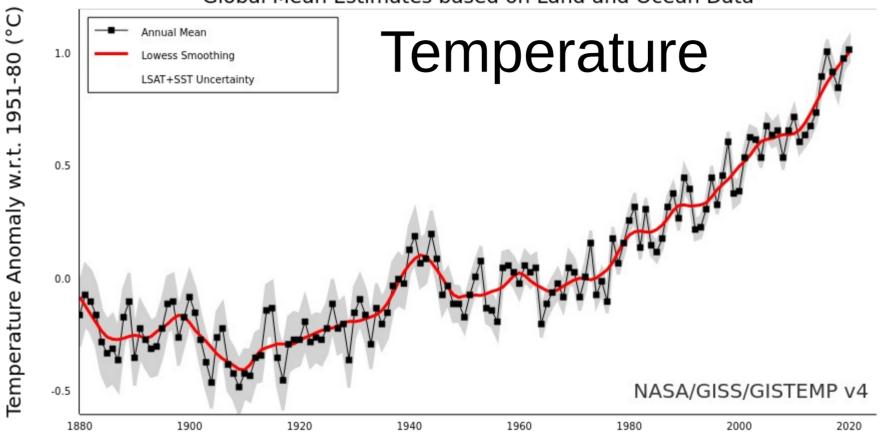
an introduction

Knud Jahnke
Max Planck Institute for Astronomy
Heidelberg, Germany

Input and discussions by:
MPIA Sustainability Group
Astronomers For Planet Earth


jahnke@mpia.de, @knudjahnke astronomersforplanet.earth

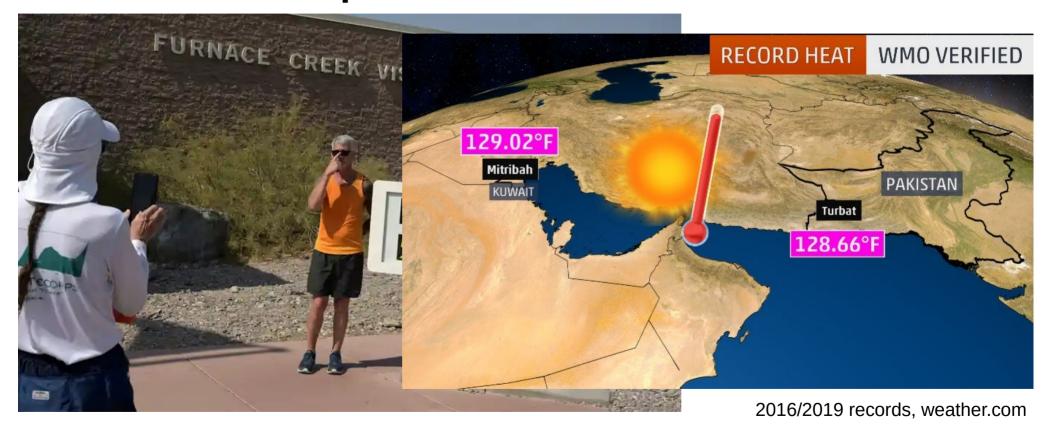
Sustainability?


"making only such use of natural, renewable resources that people can continue to rely on their yields in the long term"

Scripps Institution of Oceanography keelingcurve.ucsd.edu

Global Mean Estimates based on Land and Ocean Data

https://data.giss.nasa.gov/gistemp/graphs_v4


- Global sea-level rise
- More extreme weather
- Worse extreme weather
- Local climate impacts

Bridget Bennet/Reuters via The Guardian (July 2021)

Bridget Bennet/Reuters via The Guardian (July 2021)

Lytton, Canada, 2021 Darryl Dyck, The Canadian Press via CBC.ca

Australia, 2020

Matthew Abbott for The New York Times

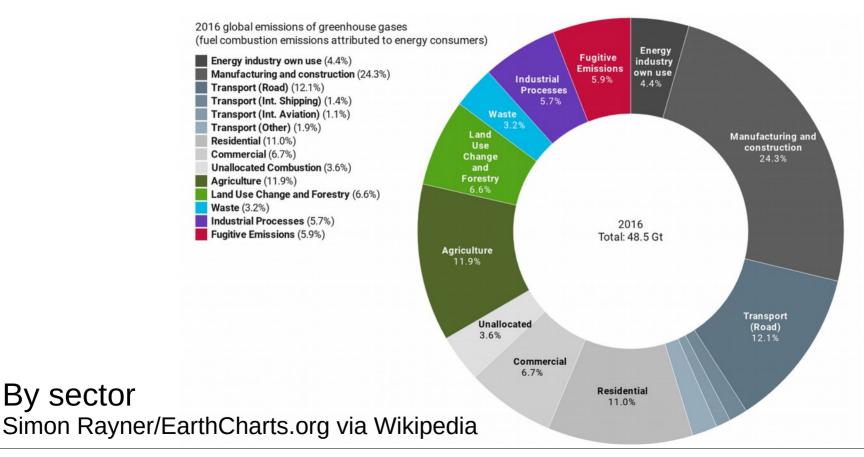
Germany, 2020 Imago-images.de/Jan Eifert, Florian Karlstedt

Germany, last week

Solomon islands

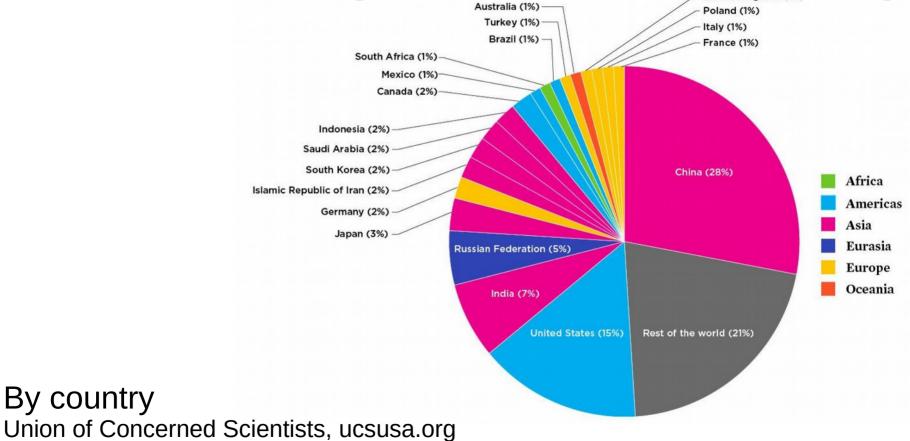
Jakarta 2020 AP photo

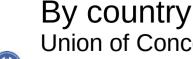
Madagascar, right now REUTERS via tagesschau.de


Climate crisis could displace 1.2bn people by 2050, report warns

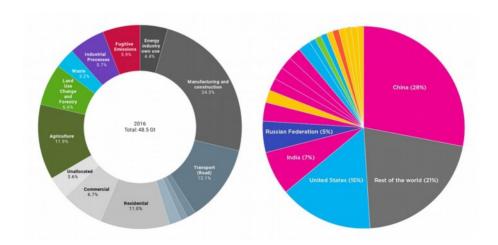
Countries unable to withstand ecological threats among world's least peaceful, analysis finds

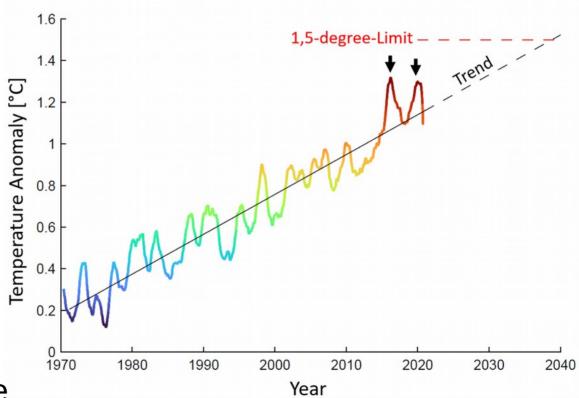
The Guardian 2020


Greenhouse gases: who's emitting?



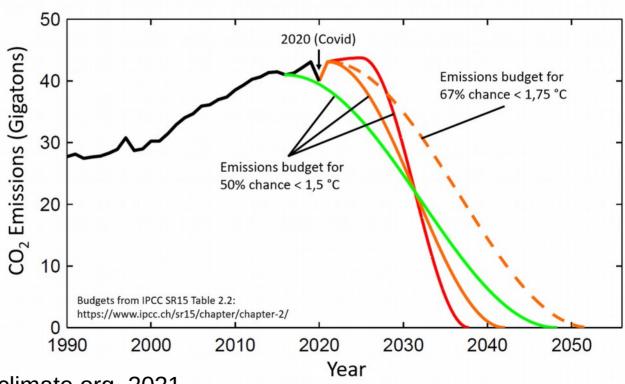
By sector


Greenhouse gases: who's emitting?


Greenhouse gases: who's emitting?

- 1) It is us
- 2) The total is the sum of the parts

Paris Agreement: < +1.5°C


Global temperature

Stefan Rahmstorf, realclimate.org, 2021

Paris Agreement: < +1.5°C

Global emissions compatible with the Paris Accord

Remaining CO₂

Stefan Rahmstorf, realclimate.org, 2021

Decarbonizing science, rapidly

- Moral angle: We are responsible for our science-related emissions
 - → We have to reduce

- Selfish angle: Will our research function in a low carbon future?
 - → Where are we actually relying on emissions?

Decarbonizing steps

- 1) Assess emission sources and amounts
- 2) Find decarbonizing solutions; identify actors
- 3) Implement solutions
- 4) Periodically evaluate effect; adjust implementation

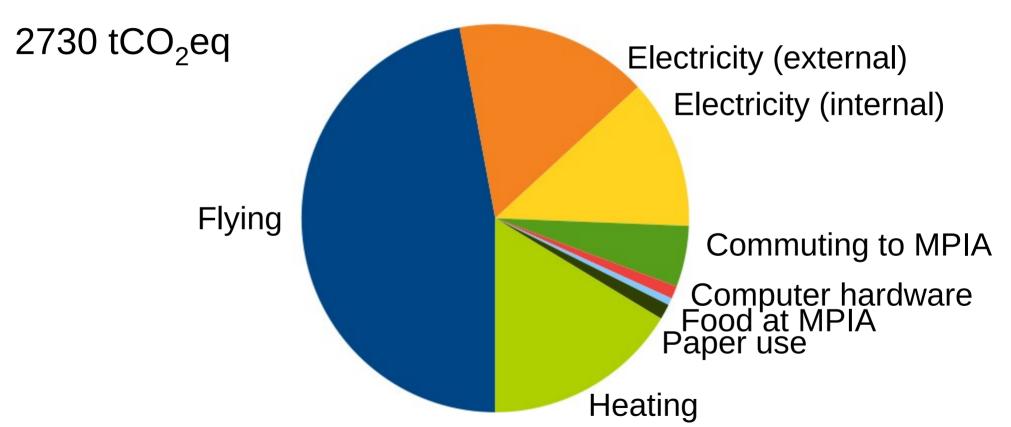
Max Planck Institute for Astronomy, Heidelberg, Germany

Fundamental astronomy/astrophysics research + instrument building for large observatories

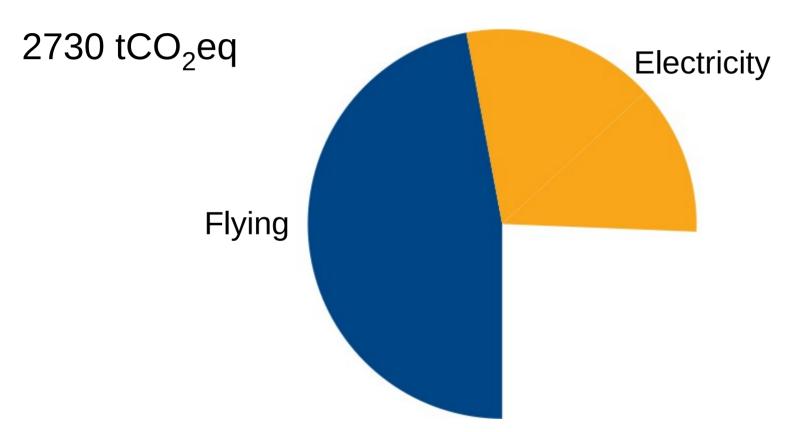
2018: ~300 employees, 150x astro, 80x engineers

Travel (air)	1030 flights	1280 tCO ₂ eq
Commuting (car)	792,000 km	139 tCO ₂ eq
Electricity (on/off campus)	3,150,000 kWh	779 tCO ₂ eq
Heating (oil)	150,000 liter	446 tCO ₂ eq
Computer (lap-/desktops)	57 units	29 tCO ₂ eq

0.15 / 7 t


1000 kg

Paper / cardboard


Meat (canteen)

35 tCO₂eq

16 tCO₂eq

Emissions total: 2730 tCO₂eq

w/ 150 researchers: 18 tCO2eq per person and year

(work only)

Germany average: 10 tCO₂eq per person and year

(all sectors + sources)

India average: 2 tCO₂eq per person and year

(all sectors + sources)

593 refereed articles: 4.6 tCO₂eq per paper

(lead- + co-authors)

Summary

- We emit, a lot
- Mix of personal, institutional, community solutions
- Focus on flying, electricity
- We need to rapidly decarbonize science!

Climate Crisis & Academic Travel

Victoria Grinberg (ESA/ESTEC - here as private person!)

@vicgrinberg / @astro4earth astronomersforplanet.earth

the most sustainable travel: no travel at all

Who is talking?

- Liaison scientist @ ESA/ESTEC (since May, previously junior research group leader @ Uni Tübingen, Germany)
- science: high energy astronomy, accretion onto compact objects & stellar winds esp. from massive stars

- a citizen who wants to secure her and her fellow humans' future
- a scientist who wants to secure her field's future
- one of the founding members of the European side of Astronomers for Planet Earth movement
- a group leader responsible for her (early career researcher - ECR) group members
- until recently: ECR herself

uture: Aufklärung gegen die Klimakrise" Dr. Gregor Hagedorn @ WissKon 2020 https://www.yo "Scientists for

academic travel: personal decisions vs. systemic constraints

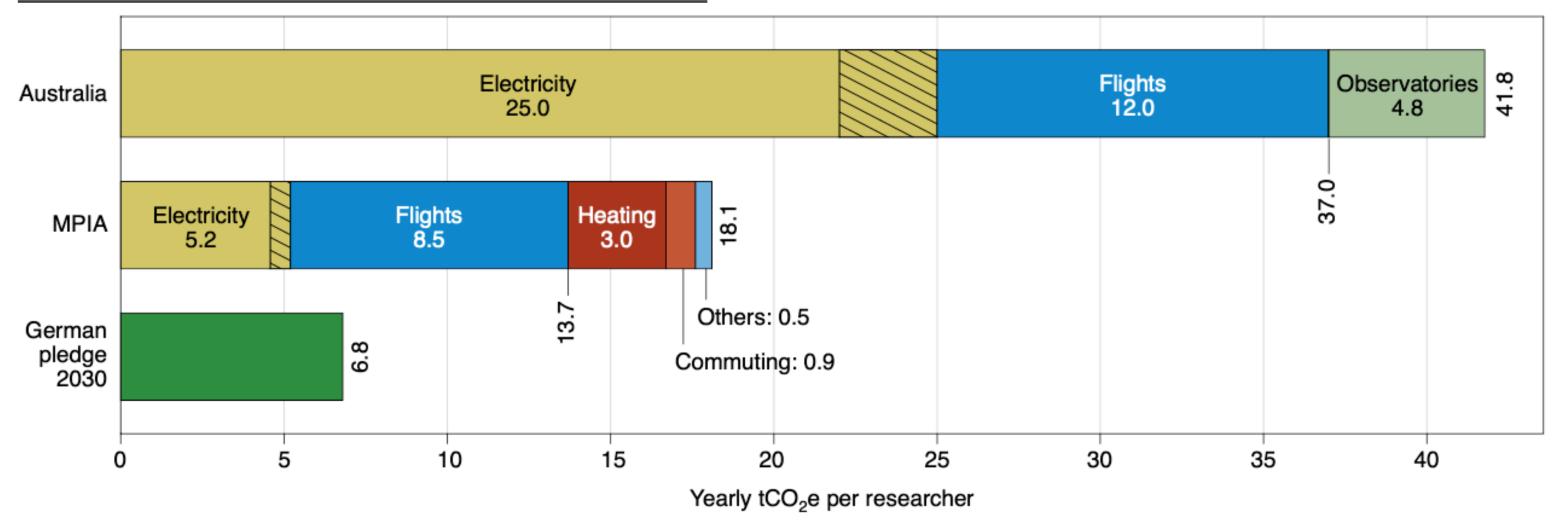
What is academic travel?

It's not only conferences!
But conferences are maybe clearest how to address ...

Purpose	Description
Full-week conference	Classic few-days conference or workshop
Colloquium (1–2 days)	Invited talk w/ or w/o extra day for discus-
	sions
Proposal review	HST, ALMA, ESO, panels
Move to new job	Often reimbursed
Visiting partner/relatives/friends	Usually privately paid
Project meeting (hardware)	Planning, reviews
Instrument construction	Engineers
Instrument commissioning	Engineers, scientists going to observatory
Project meeting astrophysics	Planning, writing, data analysis
Observing run	Visitor's mode
Staffing observatories (local travel)	Travel e.g. Santiago-Paranal
Staffing observatories ("home" travel)	Travel e.g. ESO HQ-Santiago for Euro as-
	tronomers
Research visit (>few days)	Week(s) to month(s)
Job interview	Few days, getting to know place and people
Visiting/evaluation/funding commit-	Institute, project evaluation, meetings with
tees	funding agencies
Summer school	1-2 weeks, mainly aimed at younger col-
	leagues (PhD students, postdoc) but also lec-
	turers travel
PhD defense committee member	usually 1d visit

numbers

MPIA green house gas emission 2018


Jahnke et al., Nat. Astro 2020

Source	Amount	tCO₂e	tCO₂e per researcher	Percentage (%)
Travel (air)	1,030 flights	1280	8.5	47
Electricity (on/off campus) ^a	3,400,000 kWh	779	5.2	29
Heating (oil)	150,000 I	446	3.0	16
Commuting (car)	792,000 km	139	0.9	5
Paper (cardboard)	0.15 (7) t	35	0.2	1
Computers (desktops/laptops)	57 purchased	29	0.2	1
Meat (canteen)	1,000 kg	16	0.1	<1
Total		~2,720	18.1	100%

MPIA green house gas emission 2018

MPIA vs. Australian emission

Flight emission:

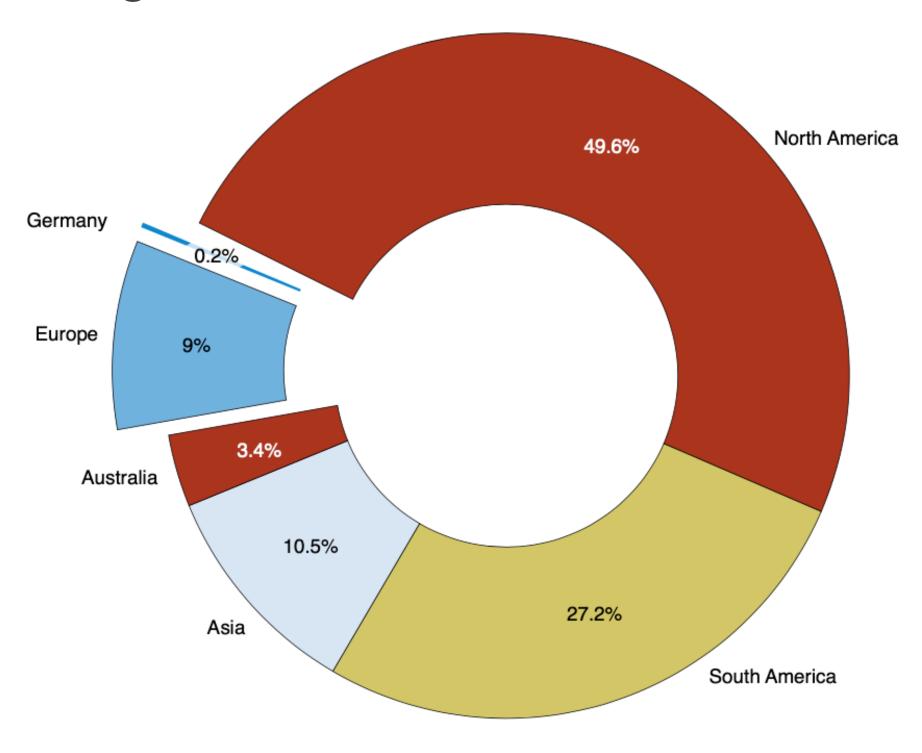
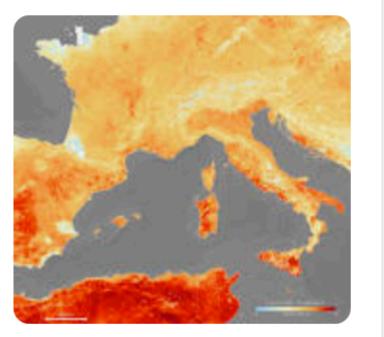


Fig. 2 | Relative GHG emissions broken down by flight destination for MPIA employees.

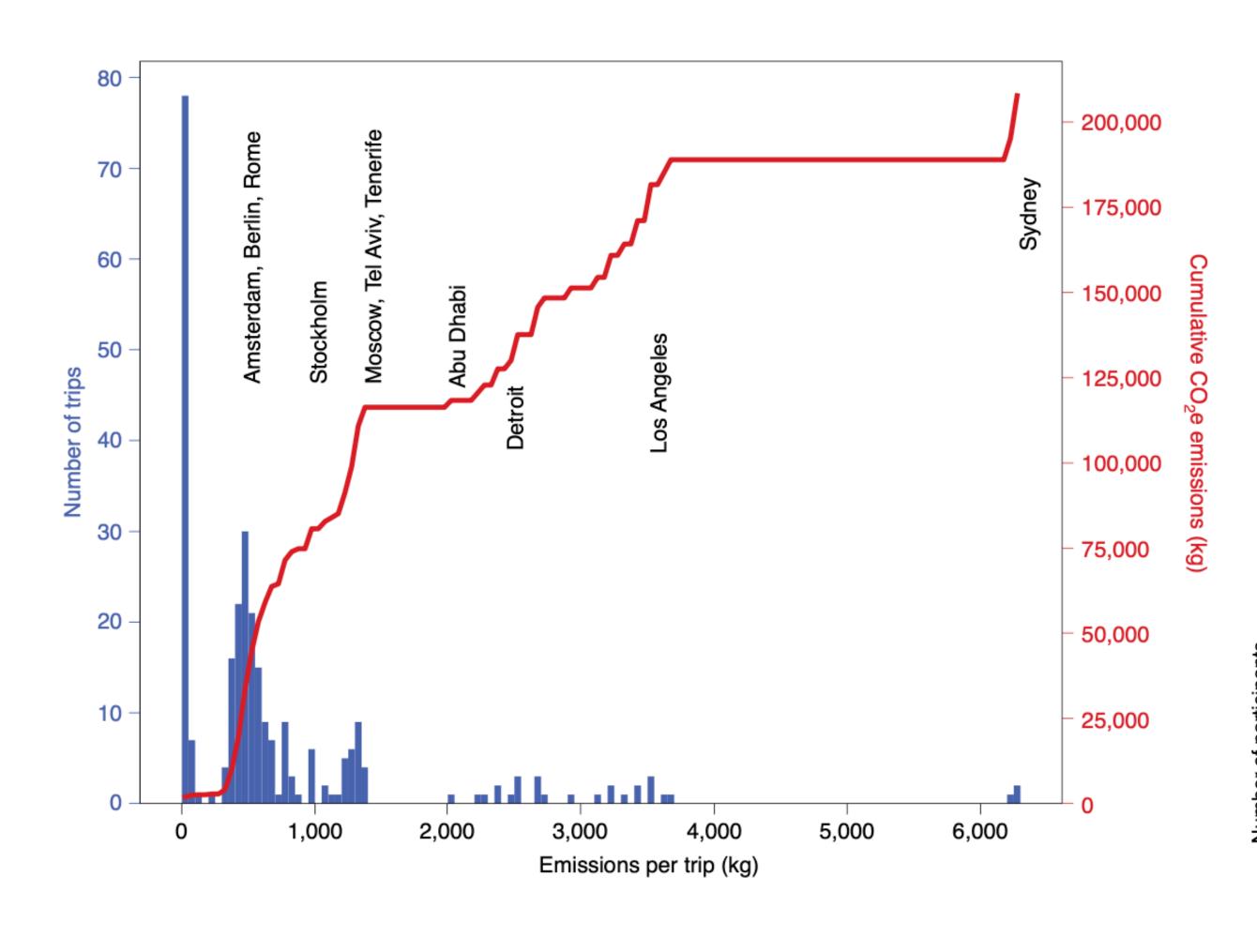
Carbon footprint of large astro meetings

Butscher et al., Nat. Astro 2020


In July **2019**, **France** experienced its second **heat wave** in less than a month, beating several regional and national temperature records. In the previous month, a national record temperature of 46.1 °C (115.0 °F) was measured in the southern commune of Gallargues-le-Montueux.

Date: 24 June 2019 - 2 July 2019

Location: Europe


en.wikipedia.org > wiki > 2019_European_heat_wave


2019 European heat wave - Wikipedia

Carbon footprint of large astro meetings

Butscher et al., Nat. Astro 2020

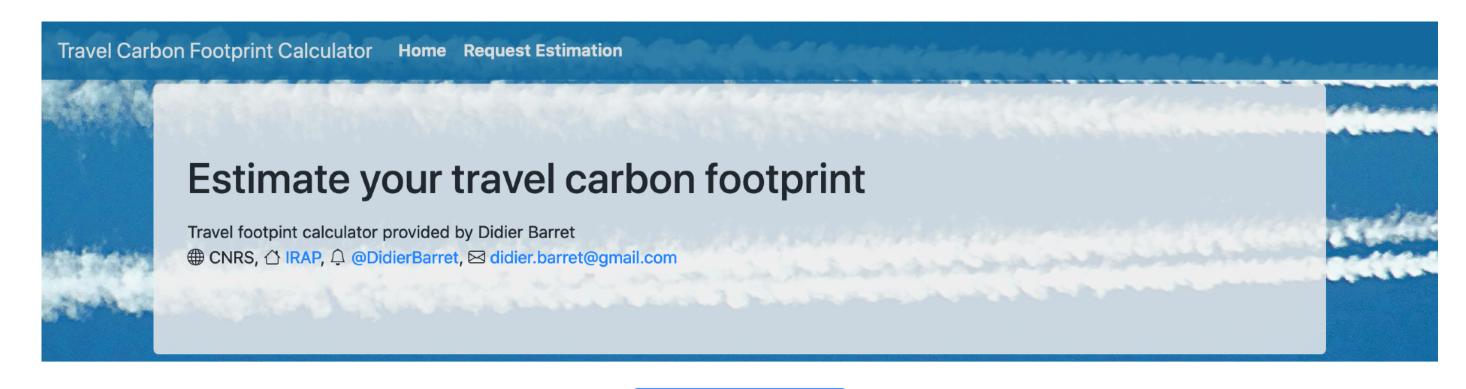
Carbon footprint of large astro meetings

Butscher et al., Nat. Astro 2020

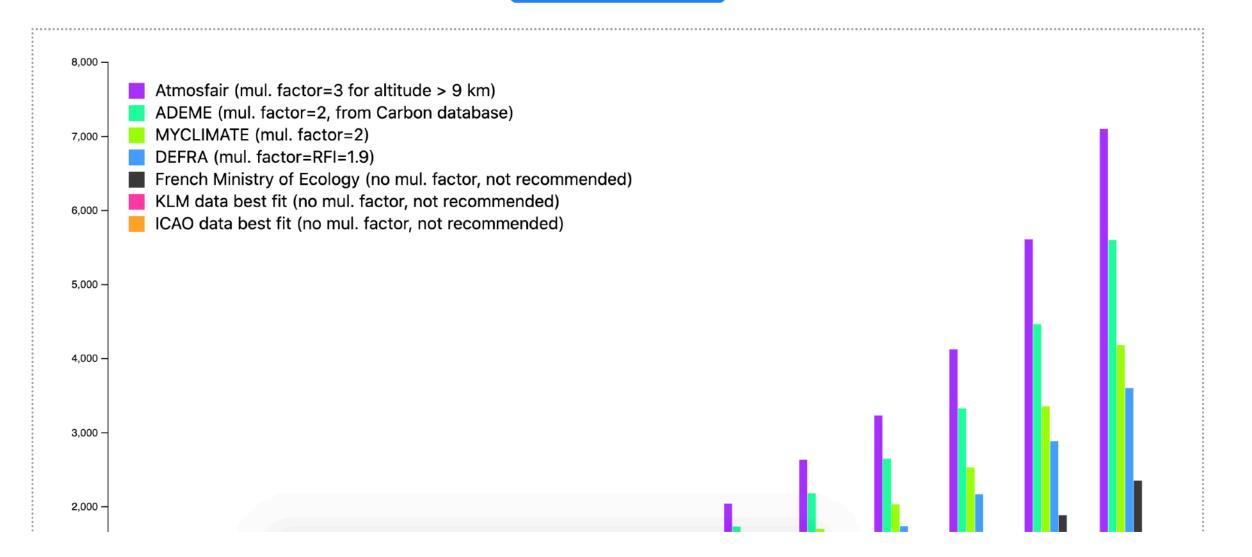
Box 1 | Estimation of carbon emissions of EAS 2020

Network-related emissions

5 days × 80% participation per day × 1,777 participants × 5.5 hours online per day × 1.2 Mbps × 3,600 s h^{-1} × 1/8 byte bit⁻¹ × 1/1,024 GB MB⁻¹ × 0.06 kWh GB⁻¹ × 0.24 kg kWh⁻¹ = 297 kgCO₂e


Laptop-related emissions

5 days × 80% participation per day × 1,777 participants × 5.5 hours online per day × 30 W × 1/1,000 kW W⁻¹ × 0.24 kg kWh⁻¹ = 281 kgCO₂e


Zoom-server related emissions

5 days × 10 hours per day × 300 W × 1/1,000 kW W⁻¹ × 0.24 kg kWh⁻¹ = 3.6 kgCO₂e

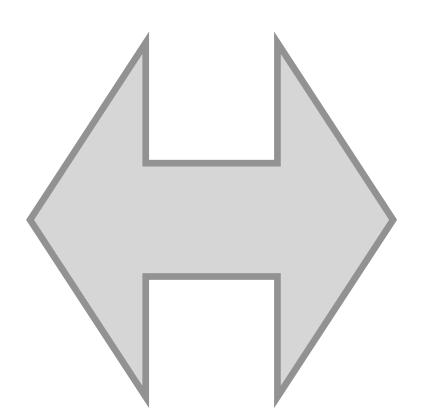
Travel footprint calculator for meetings

Request Estimation

Estimating, monitoring and minimizing the travel footprint associated with the development of the Athena X-ray Integral Field Unit -- An on-line travel footprint calculator released to the science community

Show affiliations

Barret, Didier


Global warming imposes us to reflect on the way we carry research, embarking on the obligation to minimize the environmental impact of our research programs, with the reduction of our travel footprint being one of the easiest actions to implement, thanks to the advance of digital technology. The X-ray Integral Field Unit (X-IFU), the cryogenic spectrometer of the Athena space X-ray observatory of the European Space Agency will be developed by a large international consortium. The travel footprint associated with the development of the X-IFU is to be minimized. For that purpose, a travel footprint calculator has been developed and first released to the X-IFU consortium members. The calculator uses seven different emission factors and methods differing by up to a factor of ~5 for the same flying distance. The observed differences illustrate the lack of standards and regulations for computing the footprint of flight travels and are explained primarily, though partly, by different accountings of non-CO2 effects. The calculator enables us to compute the travel footprint of a large set of travels and can help identify a meeting place that minimizes the overall travel footprint for a large set of possible city hosts, e.g. cities with

thoughts

Online only meetings?

environmental impact

accessibility

in person interaction

spontaneous communication

We need to find a balance - and we should be careful not to confuse emergency online meetings with online-first conferences!

Online meetings: Ressources

Moss et al. 2021, Nat. Astro: "Forging a path to a better normal for conferences and collaboration"

Moss et al. 2020, Zenodo: "The Future of Meetings: Outcomes and Recommendations"

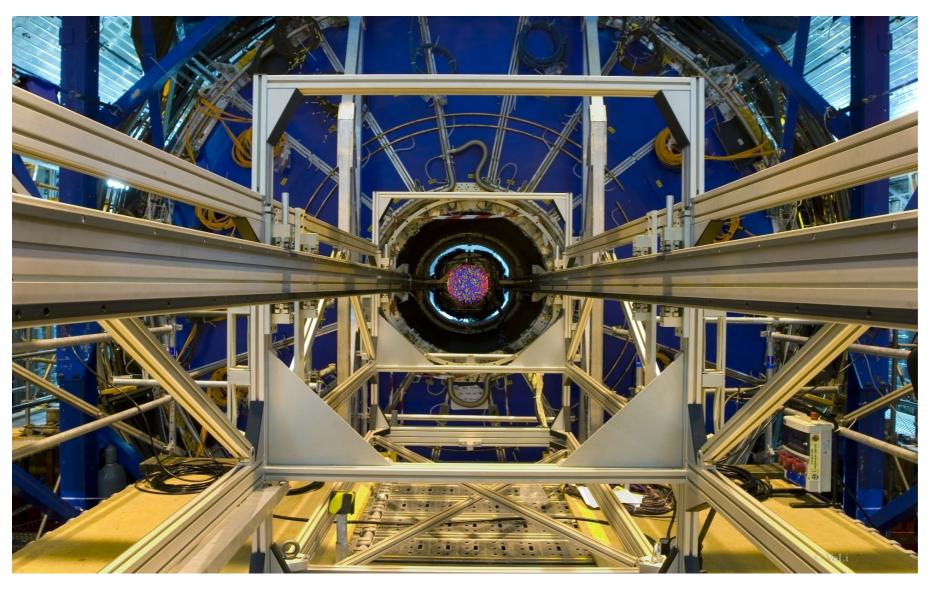
& references therein

Travel: Accessibility

ICRC 2019: Madison 857 participants 39 countries 1062 abstracts ICRC 2021: Berlin 1601 participants 54 countries 1400 abstracts

visa problems!

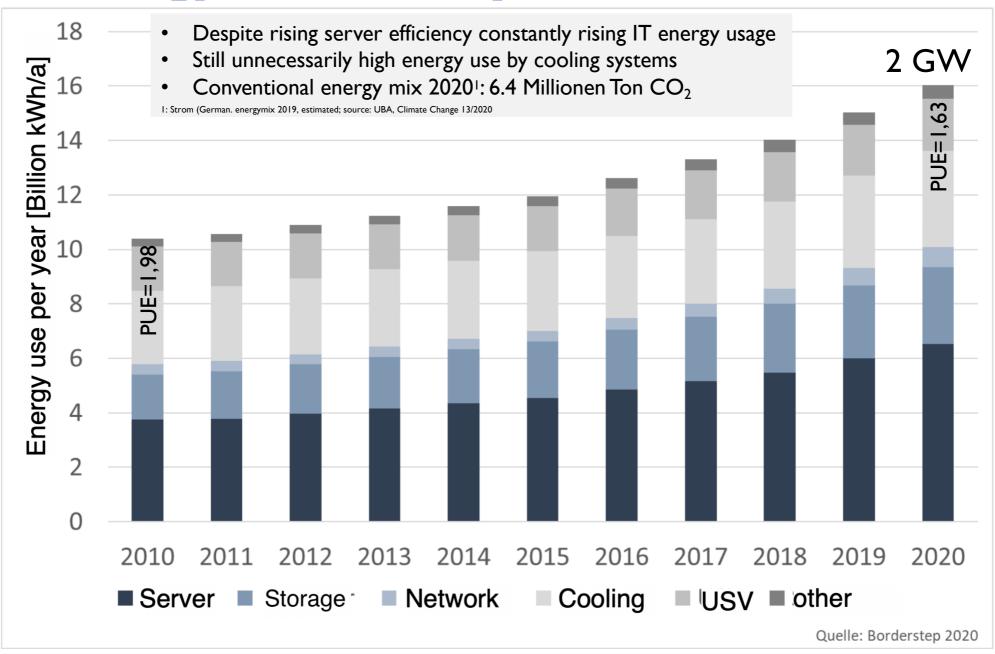
Travel: Accessibility


Dr. Sarah White: An environment for everyone

(invited talk @ ESA 2021)

the most sustainable travel: no travel at all

maybe (?) not doable, but both personal & systemic changes possible & necessary


Energy Efficient Computing

Prof. Dr. Volker Lindenstruth FIAS, IfI, LOEWE Professur Chair of HPC Architecture University Frankfurt, Germany GSI Helmholtzcenter

Phone: +49 69 798 44101
Fax: +49 69 798 44109
Email: voli@compeng.de

www.compeng.de

IT Energy use Germany

An Alarming Truth

World wide air-traffic causes around

2 % of the global CO₂ emission –

less than commercial IT! (ca. 40 GW)

[Gartner]

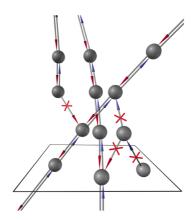
Data Center PUE 1,6

→ 38% or 15 GW
e3c PUE <1,1

→ 9% or 3,6 GW

CO₂ saving: 65MT CO₂

Three main areas for optimization


Data Center Architecture

Algorithm

Heat Transmission via Air and Water

Required Volumetric Current:

$$Q=\dot{V}=rac{P}{c_{
m p}\cdot
ho\cdot\Delta T}$$
 $P:$ Thermal Power Loss $\Delta T:$ Temperature Difference

Air

Specific Heat Capacity:

$$c_{
m p}=1{,}005\,{
m rac{kJ}{kg\cdot K}}$$
 Density: $ho=1{,}184\,{
m rac{kg}{m^3}}$

$$\rho = 1{,}184 \frac{k}{m}$$

(Standard Conditions)

Example: Notebook-Computer (30 W)

max. 50 °C

$$\Delta T = 25 \,\mathrm{K}$$

 $\Rightarrow Q = 1.0 \,\frac{1}{\mathrm{s}}$

Example: Data Center (1 MW)

Exit Air:

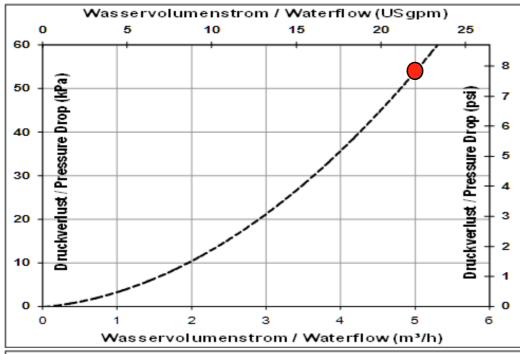
$$\Delta T = 25 \,\mathrm{K}$$
 $\Rightarrow Q = 33.600 \,\frac{1}{8}$

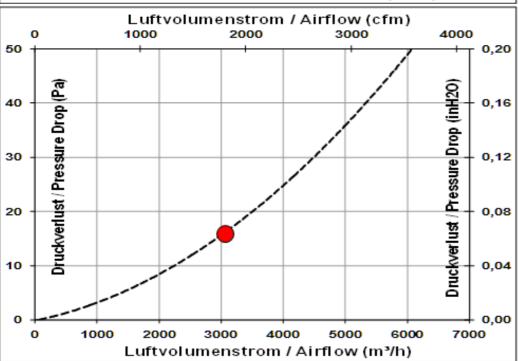
Water

Specific Heat Capacity:

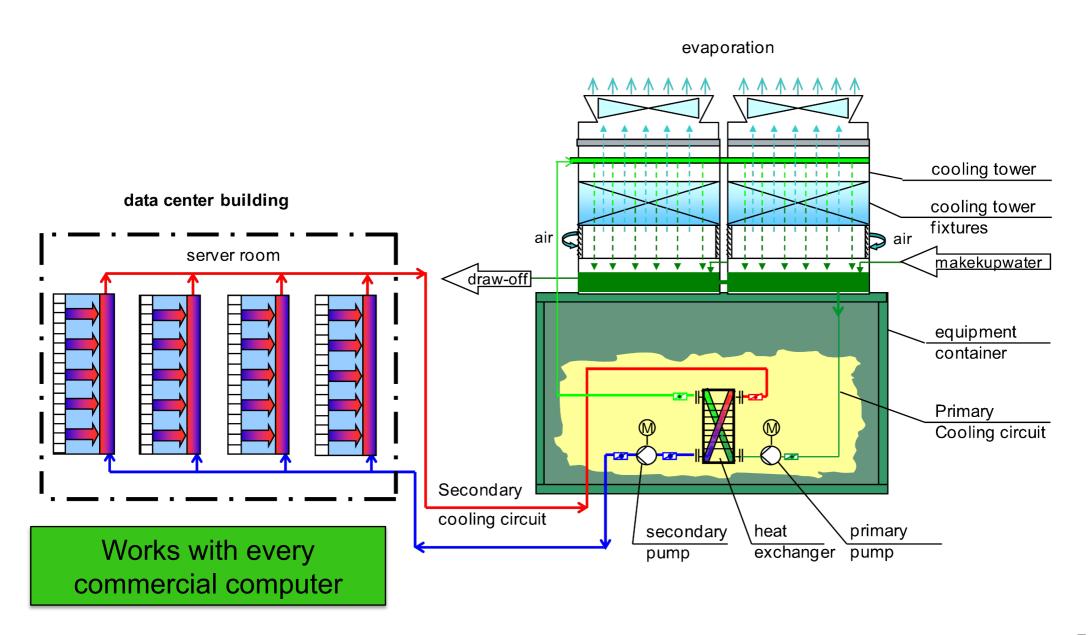
$$c_{
m p}=4{,}183\,{
m rac{kJ}{kg\cdot K}}$$
 Density: $ho=997{,}0\,{
m rac{kg}{m^3}}$

$$\rho = 997.0$$


(Standard Conditions)


Example: Data Center (1 MW)

$$\Rightarrow \frac{\Delta T = 5 \text{ K}}{Q = 48,0 \frac{1}{\text{s}}}$$



35+ kW/rack

Innovative Cooling Architecture

(12) United States Patent Lindenstruth et al.

Jun. 30, 2008

(DE) 10 2008 030 308

(10) Patent No.: US 9,476,605 B2

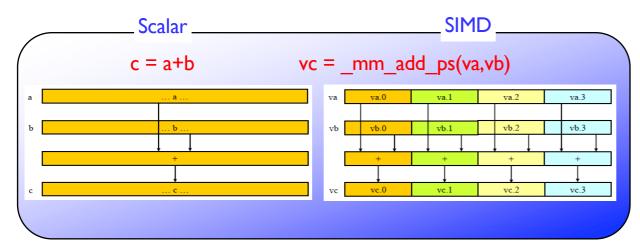
(45) **Date of Patent:** Oct. 25, 2016

(54)			(56) References Cited			
	WITH DEVICES FOR EFFICI	ENT COOLING		U.S. P	ATENT	DOCUMENTS
(75)	Inventors Velley I independ	Maina (DE).				
(75)	Inventors: Volker Lindenstruth,	\ //	2,075,349	A *	3/1937	Lawton 62/204
	Horst Stöcker, Oberus	rsel (DE)	5,323,847	A *	6/1994	Koizumi et al 165/104.33
			6,301,837	B1*	10/2001	Ray 52/27
(73)	Assignee: e3 Computing GmbH	(, Mainz (DE)	7,051,802	B2	5/2006	Baer
()			7,315,448			Bash et al 361/701
(*)	Notice: Subject to any disclaim	er the term of this	7,367,384	B2 *	5/2008	Madara G06F 1/203
()	3	•				165/122
	patent is extended or		7,971,446			Clidaras et al 62/259.2
	U.S.C. 154(b) by 551	days.	8,395,896		3/2013	Belady 361/698
			2001/0042616		11/2001	Baer
(21)	Appl. No.: 13/001,947		2004/0050231	A1*	3/2004	Chu H05K 7/2079
()						83/574
(22)	PCT Filed: Jun. 30, 2009		2004/0190229			Caci et al.
(22)	FC1 Filed. Jun. 30, 2009		2006/0037331			Nicolai et al 62/129
(0.5)	DOT 1.		2006/0289149			He 165/104.33
(86)	PCT No.: PCT/EP2009/004	704	2008/0029250			Carlson et al 165/104.33
	8 271 (a)(1)		2008/0093958	A1*	4/2008	Peterson H04Q 1/064
	§ 371 (c)(1),		2009/0226070	A 1 *	10/2009	312/223.1 Serinet 52/234
	(2), (4) Date: Jun. 1, 2011		2008/0236070 2009/0126385		5/2009	
			2009/0120383		9/2009	Trepte Brunschwiler et al 165/104.33
(87)	PCT Pub. No.: WO2010/000440		2009/0218078			Marsala
	DCT D 1 D . 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7		2007/0227203	711	J1200J	Widisara 02/119
	PCT Pub. Date: Jan. 7, 2010	FOREIGN PATENT DOCUMENTS				
			10	KEIGI	VIAIL	NI DOCOMENIS
(65)	Prior Publication I	Data	DE 1020	005005	588 A1	8/2006
	TTG 0044 /0000004 44	2011			107 A2	7/2002
	US 2011/0220324 A1 Sep. 15,	2011			107 A2 ³	
					631 A1	10/2003
(30)	Foreign Application Prior	ority Data	110	05/005	001 /11	10/2003
` /		* cited by examiner				

Driman Evanina

Awards

ENERGY EFFICIENCY AND
ENVIRONMENTAL SUSTAINABILITY
ECUBE COMPUTING GMBH



- Green-IT Award Bundesregierung "Visionäre Gesamtkonzepte"
- German data center price 2012 energy efficiency
- German data center price 2013 Visionary data center architecture
- Nominated for German data center price 2014 – energy efficiency
- DataCenterDynamics EMEA Award 2013 Data Center Blueprint
- BroadGroup EMEA Awards Special Commendation – Energy Efficiency
- "Land of Ideas"2012 for LOEWE-CSC
- Green Cube Project the Month, BMBF
- 5 nominations with 4 second positions for Data Center Dynamics EMEA Awards – 2011, 2012, 2013
- 2. rank at German Internet award 2012
- 1. rank DataCloud Awards 2015, Monaco
- Blauer Engel
- ...

Computer Architecture

- Single core CPU performance scales only slowly
- Good CPU performance requires vectorization
- In general GPU power effectiveness much larger than CPU power effectiveness
- CPU cost for real applications >7x of GPU cost
- Well vectorized code will run also very well on GPU
- GPU optimized code will also run much faster on CPU

Vector Classes (Vc)

Vector classes overload scalar C operators with SIMD/SIMT extensions

Peak-Flop Benchmark 16 Vc Intrinsics 14A ssembler 10 8 Control 10 8 Scalar SSE AVX

Vector classes:

- provide full functionality for all platforms
 - support the conditional operators

Vc increase the speed by the factor:

- ✓ SSE2 SSE4
- 4x

✓ future CPUs

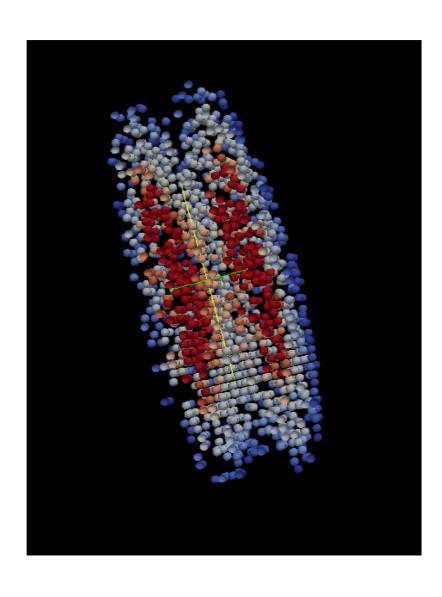
8x

✓ Xeon Phi

16x

> GPGPUs

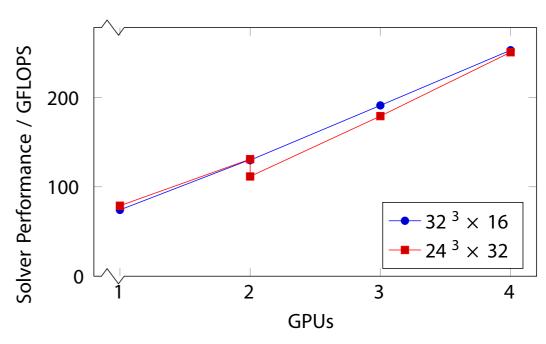
>16x


Vector classes enable easy vectorization of complex algorithms

Algorithmic Optimizations

- The largest potential in Energy and CO₂ saving is algorithmic optimization
- Design algorithm for vectorization and SIMT
- Pay attention to data structure layout and cache efficiency
- Avoid load/store by recompute wherever reasonable
- Pay attention to NUMA domains
- Bring as much as possible computing to GPU

Hybrid Quantum Molecular Dynamics

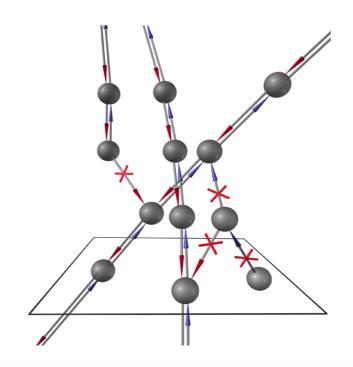


- Simulate Pb+Pb collisions with a gas phase.
- Use grid resolution of 0.2 fm.
- Millions of cells are used to compute quantities, like energy density or baryochemical potential.
- A very demanding computation: takes hours ...
- Redesign algorithms to work on modern hardware: LOEWE-CSC has more than 800 GPUs ...
- New code 160 x faster than old code, but uses only 1/5 of memory
- Now unprecedented event-by-event calculations can be carried out.
- Better statistics

OpenCL Lattice QCD

- Lattice QCD
- QCD = Strong Interaction
- Lattice QCD = Only a priory approach for QCD
- Discretize Space in 4-dim Lattice, extrapolate solutions from different lattice spacings
- Computationally sparse
 2,1 Bytes / FLOP

Inverter Performance – weak scaling



Direct GPU-GPU DMA in Open-CL 2 AMD FirePro \$10000 85% Efficiency

Modern Programming

CBM

Summarized stages of the porting procedure						
Stage	Description	Time/track	Speedup			
	Initial scalar version	12 ms	_			
1	Approximation of the magnetic field	240 μs	50			
2	Optimization of the algorithm	7.2 µs	35			
3	Vectorization	1.6 μs	4.5			
4	Porting to SPE	1.1 μs	1.5			
5	Parallelization on 16 SPEs (2 Cells)	$0.1~\mu s$	10			
	Final SIMDized version	0.1 μs	120,000			

Fast simdized Kalman filter based track fit U. Kebschull, I. Kisel, V. Lindenstruth, W.F.J. Müller Computer Physics Communication **2007**

ALICE

O2 system:

- 2000 AMD MI50 GPUs
- 16000 ROME CPUs
- Real-time on-line processing of ALICE data (>600 GB/s)

Hardware options for the parallel computation:

- SIMD CPU instructions (Vectorization)
- multi-threading
- multi-core CPU
- many-core hardware (Graphics cards, Larrabee, ...)

Summary

- 3D Green Cube Data Center
 - Data center architecture allows cost significant savings:
 - » CAPEX: 1.5 €/W for Tier-3 like data center
 - » OPEX: PUE < 1.1</p>
 - » Very small foot print, Green Cube: >30 kW/m²
 - No assumptions about computer hardware required
 - Indirect free cooling most cost effective
 - Unique and unprecedented cost (CAPEX/OPEX)
 - World wide potential savings 15 GW or 65 MT CO₂
- Computer Architecture another area of energy and CO₂ saving
 - Use vectorization of CPU code
 - Use of GPUs wherever possible
- Algorithmic optimization has huge saving potential
 - Demonstrated GPU cost/energy effectiveness >7x of CPU
 - GPU optimized code also performs better on CPU
 - Performance improvements often >100, demonstrated 10000 in particle physics

To?

Green Experiments? A case study for KM3NeT

Christos Markou

Institute of Nuclear and Particle Physics, NCSR 'Demokritos', Athens, GR cmarkou@inp.demokritos.gr

With contributions from T. Georgitsioti, G. Androulakis, R. Papaleo, S. Beurthey
On behalf of KM3NeT Collaboration

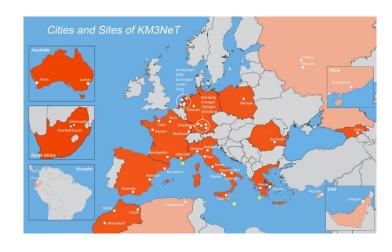
Dedicated to the memory of Giorgos Androulakis (1978-2021)

A feasibility study (2018-2019) for the preparation of establishing KM3NeT as a Zero Carbon Footprint Infrastructure.

Investigation on

- ✓ Possible strategies and technical choices
- ✓ Legal Issues
- ✓ Technical Study
- ✓ Financial considerations

Is this feasible? Does it make sense? How?


Setting the scene...

- ✓ Zero Carbon Footprint during Operation, including Detectors and Shore Stations
- ❖ Does not include Production, Assembly, Installation and Activities in Individual Institutions.

We estimate the energy budget during operation for each site with full detector to be in the range 580-650 kW (615 kW average, 5.4GWh/year, 1330 tCO₂ eq)

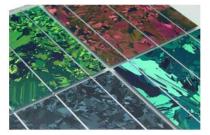
a small – to – medium size Renewable Energy Infrastructure (REI)

Distributed Infrastructure with 2+1 sites

- France South of Toulon
- Italy South-East of Capo Passero,
 Sicily
- Greece South West Peloponnese

How?

- Use certified green energy providers over the grid ok choice, but no added value, limited exposure and scope for the public, difficult to communicate in an engaging manner.
- 2. Collaborate with renewable energy providers to add to their infrastructure not feasible as we are 'small fry' for them.
- 3. Establish our own infrastructure, provided it makes sense financially, also counting in, the added value in terms of public engagement.
- Choice 1 is the only working scenario for France (mature green energy provider market, complicated procedures can easily result in many years to completion).
- ➤ Choice 3 is an attractive solution for Italy and Greece strong collaboration with local authorities / local communities.


Technology choices (1/2)

Off-the-shelf mature technologies, well suited to the sites: Mediterranean climate means lots of sun and lots of wind!

Solar usual PV panels (large scale)
PV façade panels (small scale)

Wind Horizontal axis turbines (large scale)

Vertical axis turbines (small scale)

Technology choices (2/2)

No tidal, wave, geothermal, offshore wind, floating wind, OTEC solutions.

Our working model is to

- ✓ Produce the energy required, provide it to the grid and get it back in the 'normal' way. No energy storage.
- ✓ Supplement the large-scale REI with small scale infrastructure of high aesthetic value, designed to be installed in the urban environment. Provide surplus electricity to local schools / hospitals / public buildings, in exchange of the real-estate necessary for REI installation.

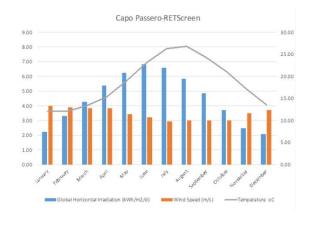
Legal issues

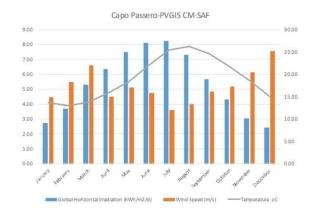
 Detailed investigation of the Italian / Greek and European legislature identified no major legal issues / obstacles on having REI owned and operated by legal entities like the research institutions responsible for the installation sites of KM3NeT.

Does all this make sense financially?

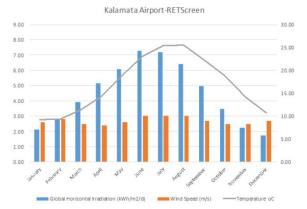
- Define various scenarios of REI configurations with full specs for each of them
- Detailed, realistic simulations of energy production
- Proper calculation of the actual cost of energy production with realistic estimates of REI installation and running costs
- Comparison with normal grid energy costs

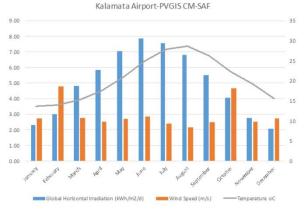
Simulation strategy


- Weather data from several databases (PVGIS, PVGISCM-SAF, RETScreen, etc) provide hourly data with spatial resolution of 3km over land, using land based stations, satellite data and extrapolation over several years:
 - > ambient temperature
 - > atmospheric pressure
 - > solar irradiation
 - wind speed and direction
 - info on the terrain and surrounding landscape
 - ➤ Choice of REI system configuration and specs
- Are fed to simulation programs like PVsyst, SAM and HOMER to calculate the energy production over the lifetime of the project.
 - Losses are taken into account, including variations of irradiance levels, temperature, soiling, ohmic losses, power and voltage threshold losses, turbine performance degradation, etc.



Weather Data




Italy

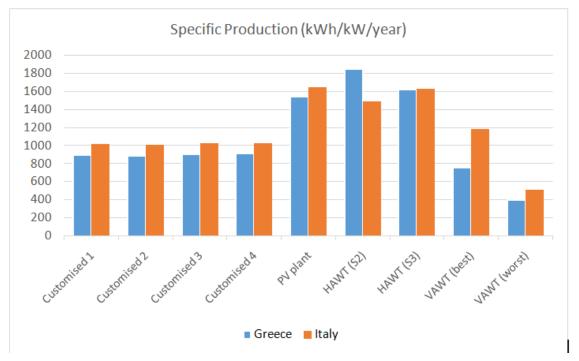
Greece

Christos Markou, ICRC 2021, 2021-07-21

REI configurations

Capo Passero:

- 1 Horizontal axis wind turbine at 3 MW installed capacity (Enercon E-82 E4)
- 60 kW capacity of vertical axis wind turbines (6 x Aeolos V)
- PV systems of 140 kW of total installed capacity, including 40kW of PV facades


Kalamata:

- 1 Horizontal axis wind turbine at 2.3 MW installed capacity (Enercon E-103 EP2)
- 60 kW capacity of vertical axis wind turbines (6 x Aeolos V)
- PV systems of 440 kW of total installed capacity, including 40kW of PV facades

Specific energy production

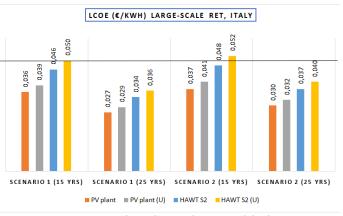
Scenarios	Yearly energy yield			
	MWh/year			
Capo Passero (max)	5956.80			
Capo Passero (min)	4766.00			
Kalamata (max)	5387.40			
Kalamata (min)	4310.00			

Customized 1-4: Different façade PV panel models

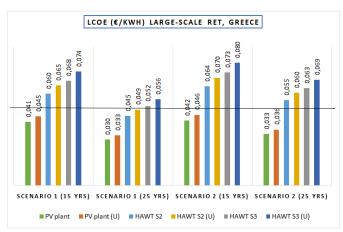
HAWT: Horizontal Axis Wind Turbine VAWT: Vertical Axis Wind Turbine

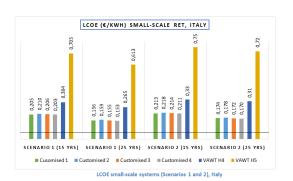
...does all this make sense financially?

If Levelized Cost of Energy compares favorably with the electricity cost through normal channels (wholesale - retail)


$$LCOE = \frac{Total \: Life \: Cycle \: Cost}{Total \: Lifetime \: Energy \: Production}$$

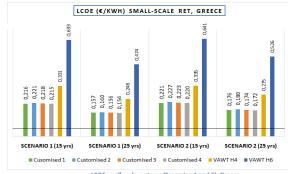
We calculate LCOE with cost including actual pricing through quotations for materials, installation, maintenance, replacements, 2 scenarios of inflation (historic average and double) and 2 scenarios for the lifetime of the system (15 and 25 years).


LCOE



Scenario 1
Average inflation (10 years)
Scenario 2

Scenario 2 2 x Average inflation (10 years)



LCOE large-scale systems (Scenarios 1 and 2), Italy

LCOE large-scale systems (Scenarios 1 and 2), Greece

LCOE small-scale systems (Scenarios 1 and 2), Greece

Conclusions

- It is possible technically,
 - It makes sense financially over the project lifetime,
 - It can be a great way to pass the right message to the public,
 - It can be the perfect vehicle to engage local and national authorities