Monthly Proton, Helium, Carbon & Oxygen fluxes measured by AMS on the ISS Matteo Palermo Scollaboration

Physics and Astronomy Department University of Hawaii at Manoa Honolulu, Hawaii, US

ISS Altitude: ~400 km Orbit: 90 minutes Size: 70m x 110m x 20m

AMS-02 Size: 5m x 4m x 3m Weight: 7.5 ton Power: 2.4 kW

AMS on the ISS

10-th Year Anniversary

May 16, 2011: AMS Flight, Space Shuttle Endeavor

La Laborer Aren

AMS will continue through the lifetime of ISS

Over 178 billion charged particles have been measured

Interstellar Winds

- Diffusion
- Convection
- Adiabatic changes

Magnetic drift ICRC 2021

Outer boundarry of Heliosphere

Sun

Subsonic Flow

Region terminating the region of supersonic solar wind

Interstellar Winds

- Diffusion
- Convection
- Adiabatic changes

Magnetic drift ICRC 2021

Outer boundarry of Heliosphere

Sun

Subsonic Flow

Region terminating the region of supersonic solar wind

Solar Modulation

The Cosmic Ray propagation in the Heliosphere is described by the Parker Equation:

$$\frac{\partial f}{\partial t} + \vec{V}_{SW} \cdot \vec{\nabla} f - \vec{\nabla} \cdot (K \cdot \vec{\nabla} f) - \frac{1}{3} \vec{\nabla} \cdot \vec{V}_{SW} \frac{\partial f}{\partial \ln R} = 0$$
Solar wind Diffusion and drifts Adiabatic energy losses and gains convection

The Cosmic Ray propagation in the Heliosphere is described by the Parker Equation:

The Cosmic Ray propagation in the Heliosphere is described by the Parker Equation:

• Velocity dependence of the diffusion tensor:

 $k(r,R) = \beta k_1(r) k_2(R)$

Nuclei with distinct A/Z result in different velocity, hence a different behavior

The Cosmic Ray propagation in the Heliosphere is described by the Parker Equation:

• Velocity dependence of the diffusion tensor:

 $k(r,R) = \beta k_1(r) k_2(R)$

Nuclei with distinct A/Z result in different velocity, hence a different behavior • Difference in the spectral shape outside the heliosphere (Local Interstellar Spectrum, LIS): the adiabatic energy changes term depends on the LIS shape, hence nuclei with different LIS behave differently.

Preliminary Data Please refer to the AMS forthcoming publication in PRL

- proton,

fluxes from May 2011 to Oct. 2019, in 27 days time interval (Bartels rotations)

- Rigidity ranges: [1 , 60] GV for p

Preliminary Data Please refer to the AMS forthcoming publication in PRL

- **proton, Helium,** fluxes **from May 2011 to Oct. 2019**, in 27 days time interval (Bartels rotations)

- Rigidity ranges: [1 , 60] GV for p [1.7, 60] GV for He

Preliminary Data Please refer to the AMS forthcoming publication in PRL

- proton, Helium, Carbon fluxes from May 2011 to Oct. 2019, in 27 days time interval (Bartels rotations)

- Rigidity ranges: [1 , 60] GV for p [1.7, 60] GV for He [1.9 , 60] GV for C

Preliminary Data Please refer to the AMS forthcoming publication in PRL

- proton, Helium, Carbon & Oxygen fluxes from May 2011 to Oct. 2019, in 27 days time interval (Bartels rotations)

- Rigidity ranges: [1, 60] GV for p [1.7, 60] GV for He [1.9, 60] GV for C [2.1, 60] GV for O

- similar **long-term** and **short-term** time structures

Preliminary Data Please refer to the AMS forthcoming publication in PRL

- proton, Helium, Carbon & Oxygen fluxes from May 2011 to Oct. 2019, in 27 days time interval (Bartels rotations)

- Rigidity ranges: [1, 60] GV for p [1.7, 60] GV for He [1.9, 60] GV for C [2.1, 60] GV for O

- similar **long-term** and **short-term** time structures

At ICRC2021 by AMS collab.:

- Daily p, by Y. Jia (749)
- Daily He, by C. Consolandi (1139)
- SEP, by C. Light (1003)
- FD, by S. Wang (1146)

17

Preliminary Data Please refer to the AMS forthcoming publication in PRL

- proton, Helium, Carbon & Oxygen fluxes from May 2011 to Oct. 2019, in 27 days time interval (Bartels rotations)

- Rigidity ranges: [1, 60] GV for p [1.7, 60] GV for He [1.9, 60] GV for C [2.1, 60] GV for O

- similar **long-term** and **short-term** time structures

- the **amplitude** of these structures **decreases with increasing rigidity**

and becomes non-observable at: ~ 25 GV for C & O ~ 50 GV for He while it's **always observable for protons** in the rigidity range analyzed.

C/O Flux Ratio

ICRC 2021

He / (C+O) Flux Ratio

Matteo Palermo

Preliminary Data Please refer to the AMS forthcoming publication in PRL

- 4 Bartels rotations time interval

- He/(C+O) flux ratio exhibits a time dependence up to ~2.5 GV

- He, C&O have similar A/Z → their LIS have different rigidity dependence above 2 GV

20

Flux Ratios Inside & Outside the Heliosphere

Smooth continuation of the flux ratios measured inside (AMS) and outside (Voyager 1) the Heliosphere

ICRC 2021

p / (C+O) Flux Ratio

Matteo Palermo

Preliminary Data Please refer to the AMS forthcoming publication in PRL

- 4 Bartels rotations time interval

- p/(C+O) flux ratio exhibits a time dependence up to ~4 GV

- p, C&O have different A/Z

 → both LIS rigidity
 dependence and velocity
 contribute to the observed time
 dependence of p/(C+O)

Summary & Conclusions

- The precision measurement of proton, Helium, Carbon and Oxygen fluxes in Bartels rotations from May 2011 to October 2019 has been presented
- The study of the time evolution as a function of rigidity for different nuclei species provides unique info to understand the contribution of the LIS and of the velocity dependence of CR propagation in the heliosphere
- The first and only measurement of the time dependence of Carbon and Oxygen fluxes as a function of rigidity
- The 4 nuclei species exhibit **similar behavior** in time:
- C&O have an identical time behavior, indicating a very similar rigidity dependence of their LIS above ~2GV.
- The He/(C+O) flux ratio exhibit a time dependence up to ~2.5 GV, indicating that their LIS has a different rigidity dependence
- The p/(C+O) flux ratio also shows a time dependence up to ~4 GV. Both LIS rigidity dependence and velocity contribute to this time behavior

Thanks For Your Attention

