

GRB 190829A — long afterglow measurement with H.E.S.S.

D. Khangulyan, F. Aharonain, C. Romoli, E. Ruiz, F. Schüssler,
 A. Taylor, S. Zhu for H.E.S.S. Collaboration
 37th International Cosmic Ray Conference
 13th July 2021

Detection of GRBs in the VHE regime: importance & challenges

Observation of GRB 190829A with H.E.S.S.

GRB 190829A: Modeling

GRB 190829A: Result implications

D.Khangulyan for H.E.S.S. Collaboration . VHE γ rays from GRB190829A . ICRC2021 . 07/13/2021 2/26

Detection of GRBs in the VHE regime: importance & challenges

 Shock acceleration is a very important mechanism for production of cosmic rays

Diffusive shock acceleration

 Power-law spectrum with $\frac{dN}{dE} \propto E^{-s}$ where $s = \frac{v_1/v_2+2}{v_1/v_2-1} \approx 2$
 Acceleration time $t_{ACC} \approx \frac{2\pi r_G}{c} \left(\frac{c}{v_1}\right)^2$

- Shock acceleration is a very important mechanism for production of cosmic rays
- It is fairly well understood in the non-relativistic regime, but not in the relativistic one

Relativistic shocks

- Particles can get a significant energy by shock crossing, but
- Particles do not have time to isotropize in the downstream

- Shock acceleration is a very important mechanism for production of cosmic rays
- It is fairly well understood in the non-relativistic regime, but not in the relativistic one
- GRB afterglows are produced by relativistic shocks in their simplest realization

Relativistic shocks

- Forward shock propagates through ISM medium (or stellar wind)
- There is a self-similar hydrodynamic model (Blandford&McKee1976)

- Shock acceleration is a very important mechanism for production of cosmic rays
- It is fairly well understood in the non-relativistic regime, but not in the relativistic one
- GRB afterglows are produced by relativistic shocks in their simplest realization
- Detection of IC emission helps to constrain the downstream conditions and define energy of synchrotron emitting electrons

Leptonic source

- Interpretation of synchrotron emission is ambiguous because of "magnetic field" – "electron energy" degeneracy
- Detection of **IC** helps to resolve it

- Shock acceleration is a very important mechanism for production of cosmic rays
- It is fairly well understood in the non-relativistic regime, but not in the relativistic one
- GRB afterglows are produced by relativistic shocks in their simplest realization
- Detection of IC emission helps to constrain the downstream conditions and define energy of synchrotron emitting electrons
- Because of the synchrotron burn-off limit, emission detected in the VHE regime is expected to be of IC origin

Synchrotron burn-off limit

- Synchrotron cooling time: $t_{\text{SYN}} \approx 400 E_{\text{TeV}}^{-1} B_{\text{B}}^{-2} \text{ s}$
- Acceleration time: $t_{ACC} \approx 0.1 \eta E_{TeV} B_{B}^{-1}$
- Max energy: $\hbar \omega < 200 \frac{\Gamma}{n}$ MeV

Why do we expect to see GRBs@VHE?

- Relativistic outflows
- Bright non-thermal sources
- A few GRBs per week

Why did it take so long to detect GRBs in the VHE regime?

D.Khangulyan for H.E.S.S. Collaboration . VHE γ rays from GRB190829A . ICRC2021 . 07/13/2021 5/26

Why do we expect to see GRBs@VHE?

- Relativistic outflows
- Bright non-thermal sources
- A few GRBs per week

Observation difficulties

- Highly variable sources
- Bright synchrotron emission
 - IC can be suppressed
 - Internal absorption
- Cosmological distances, EBL attenuation \Rightarrow

Why do we expect to see GRBs@VHE?

- Relativistic outflows
- Bright non-thermal sources
- A few GRBs per week

Observation difficulties

- Highly variable sources
- Bright synchrotron emission
 - IC can be suppressed
 - Internal absorption
- Cosmological distances, EBL attenuation \Rightarrow

D.Khangulyan for H.E.S.S. Collaboration . VHE γ rays from GRB190829A . ICRC2021 . 07/13/2021 5/26

Why do we expect to see GRBs@VHE?

- Relativistic outflows
- Bright non-thermal sources
- A few GRBs per week

Observation difficulties

- Highly variable sources
- Bright synchrotron emission
 - IC can be suppressed
 - Internal absorption
- Cosmological distances, EBL attenuation \Rightarrow

D.Khangulyan for H.E.S.S. Collaboration . VHE γ rays from GRB190829A . ICRC2021 . 07/13/2021 5/26

EBL attenuation

- GRBs are typically registered from z_{rs} > 1
- The EBL attenuation for TeV γ rays from cosmological distances is severe

One of the key challenges

- Operating Cherenkov telescopes have a threshold at $\sim 100\,{\rm GeV}$
- 300 GeV γ rays traveling from $z_{\rm rs} = 0.5$ are attenuated by a factor of 10

EBL attenuation

- GRBs are typically registered from z_{rs} > 1
- The EBL attenuation for TeV γ rays from cosmological distances is severe

GRBs detected in the VHE regime:

• GRB 190829A: $z_{\rm rs} \approx 0.08$ and $L_{\rm iso} = 2 \times 10^{50} \, {\rm erg}$

• GRB 190114C:
$$z_{
m rs} \approx$$
 0.42 and $L_{
m iso} = 3 imes 10^{53} \, {
m erg}$

• GRB 180720B: $z_{\rm rs} \approx 0.65$ and $L_{\rm iso} = 6 \times 10^{53} \, {\rm erg}$

Observation of GRB 190829A with H.E.S.S.

GRB 190829A

- Very close:
 z = 0.0785 ± 0.0005
- Detected by GBM and BAT
- Prompt luminosity $\sim 10^{50} \, \mathrm{erg}$ per decade in X-ray band
- Afterglow luminosity $5 \times 10^{50} \, \mathrm{erg}$

- H.E.S.S. detection
- *T*₀ + 4.3h: 21.7σ
- $T_0 + 27.2 \text{h}$: 5.5 σ
- *T*₀ + 51.2h: 2.4σ

GRB detected during 3 nights! How is that possible?

Several facts contributed to this achievement

- H.E.S.S. is a very good instrument: the second night flux corresponds to 5% of Crab and it was detected in 4h with $> 5\sigma$ significance
- H.E.S.S. is in a good shape after 15 years of operation. All telescope cameras were upgrade in 2017 helped to improve the observation efficiency and increased the photon statistics by 10% (probably critical for light curve data point for third night)

GRB detected during 3 nights! How is that possible?

Several facts contributed to this achievment

- H.E.S.S. Transients WG revised the strategy for GRB observations based on late afterglow detection from GRB 180720B, making possible starting observations of GRB 190829A more than 4h after the trigger
- The contribution of Reconstruction&Analysis WG was also critical.
 Based on the site analysis, one released Atel #13052 reporting GRB190829A detection within 3h, allowing follow-up observations in South America.

GRB 190829A: VHE spectrum

- Almost model independent of EBL absorption
- Weak internal absorption
- Fit the intrinsic spectrum

 Observed spectrum
 Intrinsic spectrum

 Inight 1: $\gamma_{VHE}^{obs} = 2.59 \pm 0.09$ night 1: $\gamma_{VHE}^{int} = 2.06 \pm 0.1$

 Inight 2: $\gamma_{VHE}^{obs} = 2.46 \pm 0.23$ night 2: $\gamma_{VHE}^{int} = 1.86 \pm 0.26$

 Inight 2: $\gamma_{VHE}^{obs} = 2.07 \pm 0.09$

GRB 190829A: VHE spectrum

D.Khangulyan for H.E.S.S. Collaboration . VHE γ rays from GRB190829A . ICRC2021 . 07/13/2021 11/26

GRB 190829A: light-curve

- from 4h to 56h
- 5 data points
- can be directly compared to the X-ray light-curve
- Fit the flux with a power-law decay

$$F_{ ext{vhe}} \propto t^{-lpha_{ ext{vhe}}}$$

 $F_{
m XRT} \propto t^{-lpha_{
m XRT}}$

 Remarkably consistent slopes

GRB 190829A: summary of the observational results

- Remarkably broad spectrum measurement, between 180 GeV and 3.3 TeV
 - this required a close GRB, with $z_{\rm rs} < 0.1$
- Spectrum measurement close independent on EBL model
 - this required a close GRB, with $z_{\rm rs} < 0.1$
- Multi-day VHE light-curve, between 4 h and 56 h
 - this required a close GRB of that power
- Intrinsic VHE spectral slope matches the slope of the X-ray spectrum
 - $\gamma_{\rm XRT}=$ **2.03** \pm **0.06** and $\gamma_{\rm VHE}^{\rm int}=$ **2.06** \pm **0.1** (both for 1st night)
- VHE and X-ray fluxes have a similar time evolution
 - $\alpha_{\rm XRT} =$ 1.07 \pm 0.09 and $\alpha_{\rm VHE}^{\rm int} =$ 1.09 \pm 0.05
- Extrapolation of the X-ray spectrum to the VHE domain matches the slope and flux level measured with H.E.S.S.

GRB 190829A: Modeling

Long GRBs: physical scenario

Long GRBs: physical scenario

- Long GRBs are most likely produced at collapse of massive stars
- Magnetic field accumulated at the BH horizon launches a B&Z jet
- Prompt emission: initial jet outburst, internal jet emission, dominates for the first 10³ s
- Afterglow: jet-circumburst medium interaction, start dominating after 10³ s, last for weeks

Blandford&McKee (1976) self-similar solution for a relativistic blast wave (the relativistic version of the Sedov's solution for SNR):

$$E = \Gamma^2 Mc^2$$
, assuming $\rho \propto r^{-s} \Rightarrow \Gamma \propto R^{(s-3)/2} \Rightarrow R^{(s-3)/2}$

 $\Delta t \approx \int_{-\infty}^{R} \frac{dr}{2c\Gamma(r)^2}$

Long GRBs: physical scenario

- Long GRBs are most likely produced at collapse of massive stars
- Magnetic field accumulated at the BH horizon launches a B&Z jet
- Prompt emission: initial jet outburst, internal jet emission, dominates for the first 10³ s
- Afterglow: jet-circumburst medium interaction, start dominating after 10³ s, last for weeks

Based on the explosion energy, *E*, and density of the circumburst medium, $\rho = \rho_0 (r/r_0)^{-s}$ we obtain • Bulk Lorentz factor of the shell $\Gamma \propto \left(\frac{E}{\rho_0 t^3}\right)^{1/8}$ for s = 0• Shell radius $R \propto \left(\frac{tE}{\rho_0}\right)^{1/4}$ for s = 0• Integernal energy of the plasma $\varepsilon \propto \Gamma^2 \rho_0$ for s = 0This provides a robust basis for radiative models

Blandford&McKee (1976) self-similar solution for a relativistic blast wave (the relativistic version of the Sedov's solution for SNR):

$$\boldsymbol{E} = \boldsymbol{\Gamma}^{2}\boldsymbol{M}\boldsymbol{c}^{2}, \text{ assuming } \boldsymbol{\rho} \propto \boldsymbol{r}^{-s} \Rightarrow \boldsymbol{\Gamma} \propto \boldsymbol{R}^{(s-3)/2} \Rightarrow \Delta t \approx \int_{0}^{R} \frac{dr}{2c\boldsymbol{\Gamma}(r)^{2}}$$

Afterglow emission: simple radiative model

Radiation model: key numbers

Bulk Lorentz factor (for constant density circumburst medium)

$$\Gammapprox$$
 5 $\left(rac{ extsf{\textit{E}_{50}}}{ extsf{\textit{n}_0} extsf{t}_{4 extsf{h}}^3}
ight)^{1/8}$

i.e., we cannot change the bulk Lorentz factor considerably

Magnetic field strength

$$m{B}' pprox \mathbf{1} \left(rac{m{E}_{50} m{n}_0^3 m{\eta}_{
m B}^4}{m{t}_{
m 4h}}
ight)^{1/8} \, {
m G}$$

i.e. magnetic field can vary depending on the assumptions,

Synchrotron to inverse Compton (Thomson regime) component ratio is simply

$$\frac{L_{\rm syn}}{L_{\rm IC}} = \frac{\eta_{\rm B}}{\eta}$$

i.e., in the framework of this model we can obtain any ratio

• TeV electron produce synchrotron at

$$\hbar \omega_{
m syn} pprox 300 {
m keV} \left(rac{m{E_{50}} m{n}_0 m{\eta}_{
m B}^2}{m{t}_{
m 4h}^2}
ight)^{1/4}$$

i.e., hard X-ray - VHE emission bands can be related

Internal $\gamma-\gamma$ absorption and the Klein-Nishina effect

GRBs produced a lot of high-energy photons, these photons make an important target for the IC emission and may provide target for VHE gamma rays. There are important consequences:

- The Klein-Nishina cutoff
- Internal $\gamma \gamma$ attenuation

These effects are important if

$$1 < rac{\hbar \omega_{
m syn} E}{\Gamma^2 m_e^2 c^4} pprox rac{4 imes 10^3}{\Gamma^2} \omega_{
m syn, keV} E_{
m TeV}$$

Internal $\gamma - \gamma$ optical depth

$$au pprox rac{\sigma_{\gamma\gamma} L_{
m X}}{10 arepsilon_{
m X} c R \Gamma^2} \propto E^{-1/2}$$

GRB 190829A: MWL modelling

Five dimensional MCMC fitting of the X-ray and TeV spectra

- magnetization, $\eta_{\rm B}$
- energy in
 electrons, η_e
- cooling break, E_{br}
- cutoff energy, E_{cut}
- powerlaw slope, \(\beta_2\)

Electron spectrum

$$f(E') = \exp\left(-\frac{E'}{E_{\rm cut}}\right) \begin{cases} AE'^{-(\beta_2-1)} : E' < E_{\rm br} & E_{\rm cut} < E_{\rm syn} \\ AE_{e,{\rm br}}E'^{-\beta_2} : E' > E_{\rm br} & E_{\rm cut} > E_{\rm syn} \end{cases}$$

GRB 190829A: Result implications

Can we exclude SSC scenario?

Our numerical analysis is limited to a

- One-zone model
- Power-law distribution of electrons
- Five-dimensional parameter space

Our analytic analysis takes some "must-have" elements

- One-zone model
- X-ray to VHE flux ratio
- X-ray spectral index
- VHE spectral index

Under our assumptions we obtained that

- SSC can be responsible only under extreme assumptions for the magnetic field strength (e.g., very weak) and low radiation efficiency
- Alternatively we can fit the data if adopt a much larger bulk Lorentz factor

Three GRBs detected in VHE regime

In all three cases the VHE emission appears right at the extrapolation of the X-ray spectrum.

 H.E.S.S. observation do not show any curvature of the intrinsic spectrum, which seems to be an almost unavoidable feature of the IC emission in the Klein-Nishina regime

GRB 190829A in the context of other GRBs

Summary I

- GRB afterglow are essential for studying relativistic shocks, including two processes with extremely broad implications: magnetic field amplification and acceleration of high-energy particles
- While there are little doubles that bright X-ray soft-gamma-ray emission is synchrotron radiation of accelerated electrons, this component alone does not allow determining the particle energy
- Detection of the IC component is a key element for resolving magnetic field – particle energy degeneracy of the X-ray component
- Conventionally, synchrotron emission cannot extend beyond $\hbar\omega_{\text{MAX}} = 20(\Gamma/100) \text{ GeV}$, thus VHE band is the critical window for constraining the parameters of the downstream
 - defining the magnetic field amplification
 - constraining particle acceleration, in particular, the maximum energy
- Detection of GRB 190829A provides a unique chance for understanding the properties of relativistic shocks ⇒

Summary II

- H.E.S.S. detection of GRB 190829A is
 - Exceptionally long: the signal was detected for three nights, up to ${\bf 56}\,{\rm h}$ after the trigger
 - A very broad spectral measurement: between 0.18 and 3.3 TeV
- The fortunate proximity of the source, $z_{rs} = 0.08$, allows an almost model indepent EBL deabsorption of the spectrum
- Measured spectrum is consistent with a power-law with a photon index of \approx **2.1**, not favoring any curvature of the spectrum
- The VHE intrinsic spectral index and flux level match the extrapolation of the synchrotron X-ray spectrum to the VHE domain
- This challenges simple one-zone SSC scenarios, however, leaves a number of alternative options
 - Extreme condition (very weak magnetic field, low radiation efficiency)
 - SSC multi-zone models
 - Synchrotron only models (like require a multi-zone set up)
 - Reconsider relativistic shock (e.g., Derishev&Piran 2016)

Thanks for your attention!