Active Galactic Nuclei as neutrino sources in the PeV and EeV regimes

Xavier Rodrigues DESY Zeuthen

ICRC 2021 THE ASTROPARTICLE PHYSICS CONFERENCE Berlin | Germany

> 37th International Cosmic Ray Conference 12–23 July 2021

Astrophysical neutrino observations

.... and future experiments will improve our sensitivity to EeV neutrinos

DESY.

DESY.

Astrophysical neutrino observations

IceCube collab., PRL 124 (2019)

No strong correlation with known point sources

-> Stacking limits on source populations

-> Gamma-ray AGN do not dominate the IceCube flux

54		/
1	/	

- Hints of individual neutrino sources are starting to emerge:
 - Event in 2017 spatially and temporally coincident with a gamma-ray flare from blazar **TXS 0506+056**
 - An archival search around the position of the same source showed a significant neutrino flare back in in 2014/15
 - Dozens of individual high-energy events spatially coincident with candidate sources, such as the quasar PKS 1502+106
 - Significant excesses in time-integrated search from the directions of starburst galaxy NGC 1068 and BL Lacs PKS 1424+240 and GB6 J1542+6129

Multi-messenger models of blazar AGN

BL Lacs

Flat-Spectrum Radio Quasars (FSRQs)

Credit: Bill Saxton, NRAO/AUI/

Multi-messenger models of blazar AGN

BL Lacs

XR, Fedynitch, Gao, Boncioli, Winter, ApJ 854 (2018)

Flat-Spectrum Radio Quasars (FSRQs)

disk

emission

dust

torus

atomic broad lines

External-field model

- **Cosmic rays** interact with thermal and broad line photons
 - May **boost neutrino** emission
 - May attenuate gamma rays

Credit: Bill Saxton, NRAO/AUI/

The cosmological distribution of blazar AGN

Palladino, XR, Gao & Winter, ApJ 871 (2019)

blazar redshift

The cosmological distribution of blazar AGN

Palladino, XR, Gao & Winter, ApJ 871 (2019)

Scenario 1: AGN accelerate CRs up to max 10 PeV

Palladino, XR, Gao & Winter, ApJ 871 (2019)

Scenario 1: AGN accelerate CRs up to max 10 PeV

Palladino, XR, Gao & Winter, ApJ 871 (2019)

Scenario 1: AGN accelerate CRs up to max 10 PeV

Palladino, XR, Gao & Winter, ApJ 871 (2019)

Scenario 2: AGN accelerate CRs up to ~EeV

XR, Heinze, Palladino, van Vliet, Winter, PRL 126 (2021)

Scenario 2: AGN accelerate CRs up to ~EeV

XR, Heinze, Palladino, van Vliet, Winter, PRL 126 (2021)

Dedicated modeling of individual candidate sources

XR, Gao, Fedynitch, Palladino, Winter, ApJ L874 (2019)

see also Reimer+ ApJ 881 (2018), Petropoulou+ ApJ 891 (2020), Mastichiadis+ ApJ 906 (2021), Xue+ ApJ 906 (2021)

XR, Garrappa, Gao, Paliya, Franckowiak & Winter, ApJ 912 (2021)

Dedicated modeling of individual candidate sources

Conclusions

- A large population of low-luminosity AGN could explain the diffuse IceCube flux up to PeV energies, but the parameter space of the sources is already strongly constrained.
- experiments, while still obeying current IceCube constraints at PeV.
- Cosmic-ray interactions with external fields in AGN jets can provide a natural explanation of models still face challenges
- and AMEGO will be essential in **constraining source models**

• The IceCube neutrino flux must be dominated by a large amount of low-luminosity sources, or by sources that are optically thick to the gamma-rays co-emitted in cosmic-ray interactions.

• If AGN accelerate UHECRs, they can emit a flux of **EeV neutrinos detectable** by next-generation

neutrino emission from candidate sources during gamma-ray quiescent states, but current

• X-ray follow-ups (including polarization measurements) by future missions like e-ASTROGAM