The UHECR sky above 32 EeV viewed from the Pierre Auger Observatory

Jonathan Biteau – ICRC 2021 / CR Anisotropies – 2021.07.15

The quest for UHECR origins

Ultra-high energy cosmic rays (UHECR)

Long thought to be of extragalactic origin > 5 EeV (0.8 J!), marking the ankle

Observed spectral features: instep at 10-15 EeV, toe at 40-50 EeV

→ markers of Peters cycle (acceleration) and UHECR horizon (propagation) based on joint spectral-composition modeling

Spectral and composition observables integrated over the sphere

 \rightarrow help constrain **source distance** distribution & source **escape spectrum**

Anisotropy observables

 \rightarrow break down the flux (and composition) vs arrival direction: pinpoint sources?

Who Is Shooting Superfast Particles at the Earth?

In Which You Learn That Space Is Full of Tiny Bullets

Credits: Jorge Cham & Daniel Whiteson

The largest UHECR observatory ever built

The Pierre Auger Observatory

West Argentina at 1,400m a.s.l., spread over 3,000 km² (~ Luxembourg or Rhode Island)

1600 water Cherenkov detectors (12t each) to measure secondary particles in air showers \rightarrow 85% of the sky covered with angular resolution < 1° above the ankle

Exposure at the highest energies (loosest cuts): **120,000 km² yr sr in 2004-2020** \rightarrow **40-70x larger than previous generation** experiments (AGASA, HiRES) \rightarrow **9x larger than complementary Northern hemisphere** experiment (Telescope Array)

Some landmarks in Auger anisotropy studies

Dataset > 32 EeV from Auger phase 1 (Jan. 2004 - Dec. 2020)

Minimum energy threshold for search: highest energy range for dipolar searches (where dipole significance drops)

~ 2,600 events at E_{th} > 32 EeV, ~ 740 events at E_{th} > 48 EeV, ~ 260 events at E_{th} > 64 EeV

Searches with little a priori : singlemost overdensity, autocorrelation, supergalactic plane, Galactic plane & center

High-dimensional parameter space: $E_{th} = \{32, 33, ..., 80\}$ EeV, direction (R.A., dec), top-hat angular scale Ψ \rightarrow largest **post-trial significance** (2.2 σ , $\#_{observed}$ = 156 vs $\#_{expected}$ = 98) from localized overdensity at E_{th} > 41 EeV and Ψ = 24°

Stronger a priori: the Centaurus region

Motivation

Early-day flagging of Centaurus region (7% current exposure) Crowded area in the Council of Giants (3-6 Mpc)

Method & Result

Direction fixed to that of Cen A, free $E_{\rm th}$ and Ψ

 $E_{\text{th}} > 41 \text{ EeV}, \Psi = 27^{\circ}: 3.9\sigma \text{ post-trial deviation from isotropy (5% excess)}$ Centaurus region

Best-fit parameters and threshold energy

Fit of attenuated flux pattern + isotropy to data with variable signal fraction and smoothing scale above E_{th} = {32, 33, ..., 80} EeV For all four catalogs: most significant signal at E_{th} = 38-41 EeV on top-hat scale Ψ = 23-27° with signal fraction α = 6-15% Post-trial deviation from isotropy: from 3.1 σ (jetted AGN) up to 4.0 σ (starbursts).

Evolution of signal with exposure

Starbursts significance: 4.0 σ in ApJL 2018, 4.5 σ at ICRC2019 (similar α , Ψ above 38-41 EeV). Compatible with **linear growth within expected variance**

A closer look at the catalog-based models

Which UHECR overdensities do the models grasp?

Centaurus region in all models (M83 + Cen A + NGC 4945 at ~4 Mpc) Galactic-South-pole tepid spot in starburst model (NGC 253 at ~4 Mpc) No hotspot at (l,b) ~ (280°,75°) from IR model (Virgo cluster at ~16 Mpc)

Observed > 41 EeV

Galaxies > 1 Mpc (IR) - expected $\Phi(E_{Auger} > 40 \text{ EeV}) \text{ [km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1}]$

MB1 80 Starburst galaxies (radio) - expected $\Phi(E_{Auger} > 38 \text{ EeV}) \text{ [km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1}\text{]}$ M82 20 NGC4945 0342 180 NGC1068

Disclaimer: qualitative comparison Starbursts + IR/X-ray/γ-ray vs IR/X-ray/γ-ray yield only mild (2-3σ) preference for starbursts

Best-fit models > 38-41 EeV

All AGN (hard X-rays) - expected $\Phi(E_{Auger} > 41 \text{ EeV}) \text{ [km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1}\text{]}$

Jetted AGN (γ -rays) - expected $\Phi(E_{Auger} > 40 \text{ EeV}) \text{ [km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1}\text{]}$

Status and near future: what are the ideas?

Anisotropies in the toe region with Auger phase 1 data

 $\sim 4\sigma$ from search in Centaurus region, confirmed by catalog-based searches. Largest signal from starbursts w/o compelling evidence for catalog preference

Extension 1: Data quality & quantity

Promising inclusion of X_{max} information (see Bister's and Mayotte's contributions), particularly in the context of ongoing AugerPrime upgrade

TS growth at a rate of ~ 2 units / year (full array), with TS(5 σ) ~ 35

\Rightarrow Auger-only discovery with current approach in 2025-2030

Extension 2: Full-sky coverage

Auger-only: 85% of the sky

 \Rightarrow combination with Telescope Array exposure (~10% that of Auger, see di Matteo's contribution, promising future for such studies with TA x 4)

×10

Extension 3: From the toe down to the ankle

Significant large-scale signal in instep region (see de Almeida's contribution)

Promising tomographic mappings of matter in 1 Gyr to **connect sky patterns** (see Ding's and Biteau's contributions)

 $\Phi(E_{Auger} > 41 \text{ EeV}) \text{ [km^{-2} sr^{-1} yr^{-1}]} - \text{Galactic coordinates} - \Psi = 24^{\circ}$

