On the muon scale of air showers and its application to the AGASA data

Executive Summary

Flavia Gesualdi^{a,b}, Hans Dembinski^c, Kenji Shinozaki^d, Daniel Supanitsky^a, Tanguy Pierog^b, Lorenzo Cazon^e, Dennis Soldin^f, and Ruben Conceição^e for the Working group on Hadronic Interactions and Shower Physics

- ^a Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), San Martín, Argentina
- ^b Karlsruhe Institute of Technology, Institute for Astroparticle Physics, Karlsruhe, Germany
- ^c TU Dortmund University, Dortmund, Germany
- ^d National Centre for Nuclear Research, Lodz, Poland
- $^e \ Laborat\'orio \ de \ Instrumenta\~ção \ e \ F\'isica \ Experimental \ de \ Part\'iculas LIP \ and \ Instituto \ Superior \ T\'ecnico IST, Universidade \ de \ Lisboa UL, \ Lisbon, Portugal \ Alberta \ Alberta$
- f Bartol Research Institute, Dept. of Physics and Astronomy, University of Delaware, Delaware, USA

What is this contribution about?

We analyze the properties and systematics of two estimators of the muon scale $(z_{\ln(\cdot)})$ and $z_{(\ln \cdot)}$ and muon deficit scale, and compute them from AGASA data.

Why is it relevant/interesting?

We provide a general criterium to select the best estimator depending on the experimental conditions.

What has been done?

We quantified the effects of a mismodeled detector resolution and of shower-toshower fluctuations in said estimators.

What is the result?

Computing the muon (deficit) scale based on $z_{\ln(\cdot)}$ is always (typically) better. The AGASA data support a muon deficit in simulations at the highest energies.

$$z_{\ln\langle\cdot\rangle} = \frac{\ln\langle N_{\mu,\,\text{data}}^{\text{det}}\rangle - \ln\langle N_{\mu,\,\text{p}}^{\text{det}}\rangle}{\ln\langle N_{\mu,\,\text{Fe}}^{\text{det}}\rangle - \ln\langle N_{\mu,\,\text{p}}^{\text{det}}\rangle} \qquad z_{\langle\ln\cdot\rangle} = \frac{\langle\ln N_{\mu,\,\text{data}}^{\text{det}}\rangle - \langle\ln N_{\mu,\,\text{p}}^{\text{det}}\rangle}{\langle\ln N_{\mu,\,\text{Fe}}^{\text{det}}\rangle - \langle\ln N_{\mu,\,\text{p}}^{\text{det}}\rangle}$$

