Overview

Monte Carlo package that models neutrino flux attenuation & the distribution of leptons they produce in transit through the Earth.

THE UNIVERSITY OF IOWA

- Essential component to determine neutrino flux sensitivities of underground, suborbital and space-based detectors.
- Tau neutrinos incident at modest slant depths interact in the Earth to produce Tleptons.
- Some t-leptons emerge from the Earth and decay in the atmosphere to produce extensive air showers.
- Future balloon-borne and satellite-based optical Cherenkov neutrino telescopes will be sensitive to upward air showers from tau neutrino induced T-lepton decays.
- nuPyProp generates look-up tables for exit probabilities and energy distributions for $v_{\tau} \rightarrow \tau$ and $v_{\mu} \rightarrow \mu$. Part of the vSpaceSim simulation package^[12].
- Modular & flexible code runs with either stochastic or continuous electromagnetic energy losses for the lepton transit through the Earth.
- Various neutrino cross section & lepton energy loss models implemented along with templates for user defined models.
- The results are compared with other recent simulation packages for neutrino and charged lepton propagation.
- Sources of modeling uncertainties are also quantified.

The observation probability can be written in terms of exit probability p_{exit}, detection probability p_{det}, and the decay probability p_{decay} for an infinitesimal path length ds^[14]:

$$P_{obs} = \int p_{exit}(E_{\tau}|E_{\nu_{\tau}},\beta_{tr}) \times \left[\int ds' \ p_{decay}(s') \ p_{det}(E_{\nu_{\tau}},\theta_{\nu},\beta_{tr},s') \right] dE_{\tau}$$

nuPyProp

Our focus is on pexit and the energy distributions of the outgoing taus, independent of the tau shower detection.

- β_{tr} denotes the Earth emergence angle.
- p_{decav} relates to the decay of the τ-lepton in the Earth's atmosphere as a function of altitude.
- p_{det} determines how much of the Cherenkov signal would be effectively observed at the detector.

NUPYPROP Sameer Patel & Mary Hall Reno for the vSpaceSim Collaboration

Compact UML Diagram

Tables

E _{v; in} (GeV)	Time (hrs)
10 ⁷	0.26
10 ⁸	1.53
10 ⁹	5.08
10 ¹⁰	12.43
10 ¹¹	12.73

Run times for nuPyProp injected with 10⁸ neutrinos for Earth emergence angles from 1° to 35° , with stochastic energy loss and using University of Iowa's Argon cluster with 56 cores.

Module	Model/Type
Earth/Geometry	PREM ^[6] , User Defined
no/Anti-Neutrino Cross Section	ALLM ^[1,9] , BDHM ^[4,9] , CTEQ18-NLO ^[7,9] , CTW ^[5] , nCTEQ15 ^[9,11] , User Defined
Ionization Energy Loss	Bethe-Bloch ^[8]
emmstrahlung Energy Loss	Petrukhin & Shestakov ^[8,13]
ir Production Energy Loss	Kokoulin & Petrukhin ^[8]
nuclear Energy Loss [F ₂ (x,Q ²), except BB]	BB ^[3,8] , ALLM ^[1,8] , BDHM ^[4] , CKMT ^[10] , User Defined
ectromagnetic Energy Loss Mechanisms	Stochastic, Continuous

Different models implemented in nuPyProp

References and Collaborators

[1] Abramowicz, H., & Levy, A. 1997, arXiv:hep-ph/9712415. [2] Alvarez-Muñiz, J., Carvalho, W. R., Cummings, A. L., et al. 2019, Phys. Rev. D, 99,

- [3] Bezrukov, L. B., & Bugaev, E. V. 1981, Yad. Fiz., 33, 1195.
- [4] Block, M. M., Durand, L., & Ha, P. 2014, Phys. Rev. D, 89, 094027.
- [5] Connolly, A., Thorne, R. S., & Waters, D. 2011, Phys. Rev. D, 83, 113009.
- [6] Dziewonski, A. M., & Anderson, D. L. 1981, Physics of the Earth and Planetary
- [7] Hou, T.-J., et al. 2021, Phys. Rev. D, 103, 014013
- [8] Iyer Dutta, S., Reno, M. H., Sarcevic, I., & Seckel, D. 2001, Phys. Rev. D, 63, 094020. [9] Jeong, Y. S., & Reno, M. H. 2010, Phys. Rev. D, 81, 114012
- [10] Kaidalov, A. B., & Merino, C. 1999, Eur. Phys. J. C, 10, 153
- [11] Kovarik, K., et al. 2016, Phys. Rev. D, 93, 085037
- [12] Krizmanic, J. F., Akaike, Y., Bergman, D., et al. 2019, in International .Cosmic Ray Conference, Vol. 36, 36th International Cosmic Ray Conference (ICRC2019), 936. [13] Petrukhin, A. A., & Shestakov, V. V. 1968, Canadian Journal of Physics, 46, S377 [14] Reno, M. H., Krizmanic, J. F., & Venters, T. M. 2019, Phys. Rev. D, 100, 063010.

This work has been supported in part by NASA grant 80NSSC19K0484 and in part through computational resources provided by The University of Iowa, Iowa City, Iowa.