Precision Measurement of Daily Helium Fluxes by the Alpha Magnetic Spectrometer

Cristina Consolandi on behalf of the AMS collaboration University of Hawaii ICRC 2021 THE ASTROPARTICLE PHYSICS CONFERENCE Bodin L Gormany

> 37th International Cosmic Ray Conference 12–23 July 2021

Alpha Magnetic Spectrometer on the International Space Station since May 2011

Over 180 billion charged particles have been measured

AMS Particle Detector

Transition Radiation Detector

• e+ e- identification

Time-of-Flight counter

- Trigger
- Velocity
- Charge
- Particle flight direction

Silicon Tracker + Magnet

- Rigidity
- Charge & sign

Ring Imaging Cherenkov detector

- Velocity
- Charge

Electromagnetic Calorimeter

- e+ e- identification
- e+ e- Energy

AMS Period of Observation

AMS will continue through the lifetime of the ISS

Daily Helium Fluxes: May 20, 2011 - Oct 29, 2019

Preliminary data, refer to upcoming AMS publication

Helium Forbush Decreases

Over 100 Forbush decrease events were observed.

Daily Helium Periodicities

#749 Y. Jia: Precision Measurement of Periodicities in the Daily Proton Fluxes with AMS

Helium Solar Energetic Particles

#1003 C. Light: Solar Energetic Particles measured by AMS during solar cycle 24

Daily Helium and Proton Flux Comparison

Preliminary data, refer to upcoming AMS publication

Daily p/He Flux Ratio Anticorrelation with the Absolute Flux

Preliminary data, refer to upcoming AMS publication

Daily p/He Flux Ratio Anticorrelation with the Absolute Flux

Propagation of GCR in Heliosphere - Parker Equation

- Particle drifts due to heliospheric magnetic field gradients, curvatures and heliospheric current sheet.
- K = diffusion tensor, due to scattering on magnetic irregularities
- Adiabatic energy losses/gains due to expansion/compression of solar wind, proportional to spectral index.

Hypotheses for p/He time dependent behavior

- <u>Velocity dependence of the diffusion coefficient</u>: k(r, R) = βk₁(r)k₂(R)
 Even if k₂ is the same for all nuclei, the beta multiplying it will change the divergence of the diffusive flux term in the Parker equation for nuclei with different A/Z. A/Z(p) = 1; A/Z(³He) = 3/2; A/Z(⁴He) = 2
- 2) <u>Difference in the LIS shape</u>: the adiabatic energy change term in the Parker equation depends on the spectral index, so if two nuclei have the same A/Z, but different spectral index, the last term will be different.

Summary

1) The AMS daily Helium flux measurement from May 20, 2011 to Oct 29, 2019 was presented.

2) The daily Helium flux shows **multiple time variations** : Forbush decreases, 27-day periodicities, SEP.

3) During the maximum of solar cycle 24, **the helium flux was more suppressed than the proton flux.**

4) **p/He** flux ratio has a **long-term variation** seen in 8.5 years

5) The daily **p/He** ratio shows **sub-structures** in the **short-term variation** in coincidence with periods where the p and He fluxes has strong flux suppression.

6) A strong anticorrelation exists between the p/He flux ratio and the p flux at low rigidities.

Previous Measurements: Monthly p and He Fluxes

Previous Measurements: ³He and ⁴He Time Variation

