Analysis of capability of detection of extensive air showers by simple scintillator detectors

# **Jerzy Pryga**<sup>1</sup> Weronika Stanek <sup>2</sup> on behalf of the CREDO Collaboration

<sup>1</sup>Jagiellonian University in Kraków

<sup>2</sup>AGH University of Science and Technology

07.2021









Jerzy Pryga

Simple EAS detection analysis

1/19

### Introduction

High energy primary cosmic rays ( $E \ge 1$  TeV). Interaction with Earts's atmosphere. Cascade of secondary particles. Registration of particles on the ground.



Figure: Primary cosmic-rays energy spectrum for all particles [1].

< □ > < 同 >

### Motivation & method

**Goal of CREDO project:** Confirmation of existence of Cosmic Rays Ensembles (CRE)

#### **Requires:**

Global infrastructure of detectors.

One of possible candidates:

System of several connected scintillator detectors (like <u>Cosmic Watch</u> [2])

**Goal of this work:** Analysis of reliability and efficiency of such system.





Figure: System scheme.

3/19

#### Assumptions about detectors:

- Each of *n* devices is identical.
- Detectors are placed close to each other (within meters).
- Flat devices ⇒ detect particles from all directions.
- Small area of their surface *A*.

#### Assumptions about cascades:

- Symmetrical in azimuthal angle.
- Characterized by:
  - *E* energy o primary particle,
  - $\theta$  angle of incidence,
  - *N<sub>part</sub>* number of produced particles.
- Density ρ is a function of r distance from cascade centre.

# Simulations

Currently used:

- Showers simulated using CORSIKA software [3].
- Cascades from protons.
- 18 different energies between 1 TeV and 4000 TeV.
- From 500 to 10000 simulated cascades for each energy.
- Only particles with *E<sub>part</sub>* ≥ 0.3 *GeV* included.



Figure: Muon density distribution  $\rho_{\mu}(r)$  for proton with  $E = 100 \ TeV$  as a primary particle.

### Methodology - background

Probability of a signal from the background:

$$P_{bg} = 1 - e^{-\delta T \left( \eta \cdot A \cdot I_{bg} + f_{bg} \right)} \quad (1)$$

- $\delta T$  coincidence time,
- $\eta$  detector's efficiency,
- *I*<sub>bg</sub> background particles flux,
- *f<sub>bg</sub>* frequency of non cosmic background signals.

Expected number of background events:

$$\langle N_{bg}(k) \rangle = Q(n,k,P_{bg}) \cdot \frac{T}{\delta T}$$
 (2)

- Q(n, k, P<sub>bg</sub>) probability of coincidence (binomial distribution),
- *T* time of measurement.

# Methodology - EAS parametrization



Figure: Number of cascades with certain number of produced **muons** for primary cosmic-ray proton with energy  $E = 100 \ TeV$  as a prime.



Figure: Number of cascades with certain number of produced **photons** for a proton with energy  $E = 100 \ TeV$ .

# Methodology - EAS parametrization



Figure: Average number of produced **muons**  $\langle N_{\mu} \rangle (E)$  in cascades from cosmic-ray protons for different energies, presented with fitted function as red line.

Figure: Standard deviation of the number of produced **muons**  $\sigma_{\mu}(E)$  in cascades from cosmic-ray protons for different energies, presented with fitted function as red line.

10<sup>2</sup>

10

10<sup>3</sup>

E.m. [TeV]

# Methodology - EAS parametrization



 30
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Figure: Normalised **muons** density distribution  $\rho_{\mu}(r, N_{\mu})$  for different number of produced particles.

Figure: Normalised **muons** density distribution  $\rho_{\mu}(r, E)$  for different energies of primary particle.

# Methodology - EAS parametrization

Zenith angle distribution assumptions and simplifications:

- $\rho_{part}(\theta) \propto N_{part}(\theta)$ .
- $\rho_{part}(\theta)$  the same for every energy.
- *ρ<sub>part</sub>*(θ) does not depend on the distance from the centre of the shower *r*.



Figure: Normalised number of **muons**   $\frac{\langle N_{\mu}(\theta) \rangle}{\langle N_{0} \rangle}$  produced for different angles of incidence of primary protons with energy  $E = 100 \ TeV$  with fitted function.

# Methodology - EAS signals

Function of particles density  $\rho(r, \theta, E, N_{part})$ :

$$\rho(r, \theta, E, N_{part}) = \rho_{norm}(r) \cdot F_{\theta}(\theta) \cdot F_{E}(E, r) \cdot F_{N}(N_{part}, r) \quad (3)$$

- *ρ<sub>norm</sub>*(*r*) average particles density for vertical cascade of given energy.
- $F_{\theta}(\theta)$  scaling with angle.
- $F_E(E, r)$  scaling with energy.
- $F_N(N_{part}, r)$  scaling with total number of produced particles.

# Methodology - EAS signals

An integral for expected number of events  $\langle N(k) \rangle$ :

$$\langle N(k)\rangle = \int_{0}^{r_{max}} \int_{E_{min}}^{E_{max}} \int_{0}^{\frac{\pi}{2}} Q(n,k,P) 2\pi r j(E) T d\Omega dE dr$$
(4)

- k number of coincidences.
- *n* number of devices in the system.
- *r<sub>max</sub>* maximal distance from the centre of the cascade (radius in which 95% of particles are contained).
- j(E) frequency of primary cosmic rays [4].
- $P = 1 \exp(-\eta \cdot A \cdot \rho(r, \theta, E, N_{part}))$  probability of a signal from EAS.

#### Results

Results for system of 4 Cosmic Watches with parameters:  $A = 25 \ cm^2$ ,  $\delta T = 200 \ ms$ ,  $\eta = 95\%$ ,  $I_{bg} = 163$  particles  $m^{-2}s^{-1}$ ,  $f_{bg} = 0.1 \ s^{-1}$  and  $T = 7 \ days$ .

|   | Background                  |                              | Analysis               |                              | Simpler method         |                              |
|---|-----------------------------|------------------------------|------------------------|------------------------------|------------------------|------------------------------|
|   | Only $\mu$                  | $\mu$ , $e^{\pm}$ , $\gamma$ | Only $\mu$             | $\mu$ , $e^{\pm}$ , $\gamma$ | Only $\mu$             | $\mu$ , $e^{\pm}$ , $\gamma$ |
| k | $\langle N(k) \rangle_{bg}$ | $\langle N(k) \rangle_{bg}$  | $\langle N(k) \rangle$ | $\langle N(k) \rangle$       | $\langle N(k) \rangle$ | $\langle N(k) \rangle$       |
| 1 | 860000                      | $1.17\cdot 10^{6}$           | 41000                  | 64000                        | 59000                  | 178000                       |
| 2 | 0.092                       | 0.17                         | 0.179                  | 426                          | 0.213                  | 63                           |
| 3 | $\sim 10^{-9}$              | $\sim 10^{-8}$               | 0.0182                 | 31                           | 0.003                  | 0.406                        |
| 4 | $\sim 10^{-17}$             | $\sim 10^{-16}$              | 0.0068                 | 21                           | 0.0006                 | 0.143                        |

Table: Results of the calculations for cascades and background signals.

### Comparison with measurements

 $\langle N(k) \rangle_{window}$  - only 30% of EAS with  $\theta \ge 15^{\circ}$  have electromagnetic component included.

| k | $\langle N(k) \rangle_{\mu}$ | $\langle N(k)  angle_{\mu, e, \gamma}$ | $\langle N(k) \rangle_{window}$ | $N_{data}(k)$ |
|---|------------------------------|----------------------------------------|---------------------------------|---------------|
| 2 | 0.179                        | 426                                    | 99.5                            | 94            |
| 3 | 0.0182                       | 31                                     | 5.9                             | 2             |
| 4 | 0.0068                       | 21                                     | 3.9                             | 1             |

Table: Results of the calculations for cascades and background signals compared with measurements [5]

#### Important remark

Those are very early results and thus need to be treated with caution. After improvements in the analysis they may change significantly.

### Possible energy estimation



Figure: Expected number of coincidence signals for different energies  $\langle N_{casc}(k, E) \rangle$  for analysed system (simpler method).

Figure: Expected number of coincidence signals for different energies  $\langle N_{casc}(k, E) \rangle$  for analysed system (analysis).

・ロト ・同ト ・ヨト ・



Conclusions:

- Small detectors systems should be able to detect EAS with high reliability but rather low efficiency.
- More information about detectors is necessary.
- Conditions of measurement significantly impact results.
- Groups of heavier nuclei should be included in the analysis.
- Different energy thresholds for different particle types should be considered.
- It might be possible to estimate energy of cascades that caused signal.

#### Thank you for your attention!

< => < => < => < =>

æ

#### References I

- P.D. Group et al., Review of particle physics, The European Physical Journal C-Particles and Fields 3 (1998) 1.
- T. Abu-Zayyad, R. Aida, M. Allen, R. Anderson, R. Azuma,
   E. Barcikowski et al., *The cosmic-ray energy spectrum* observed with the surface detector of the telescope array experiment, *The Astrophysical Journal Letters* **768** (2013) L1.
- [3] D. Heck, G. Schatz, J. Knapp, T. Thouw and J. Capdevielle, Corsika: A monte carlo code to simulate extensive air showers, Tech. Rep. (1998).
- [4] R. Abbasi, Y. Abdou, M. Ackermann, J. Adams, J. Aguilar, M. Ahlers et al., *Icetop: The surface component of icecube*, *Nuclear Instruments and Methods in Physics Research Section* A: Accelerators, Spectrometers, Detectors and Associated Equipment **700** (2013) 188.

イロト イポト イヨト イヨト

[5] M. Karbowiak, T. Wibig, D. Alvarez-Castillo, D. Beznosko, A.R. Duffy, D. Góra et al., *The first CREDO registration of extensive air shower, Physics Education* 55 (2020) 055021.