- * Technical University Munich, Garching, GER
- 1) University College London, London, UK
- 2) Niels Bohr Institute, Copenhagen, DEN
- 3) Norwegian University of Science and Technology, Trondheim, NOR

PLEvM: A global and distributed monitoring system of high-energy astrophysical neutrinos

Lisa Schumacher*, Matthias Huber*, Matteo Agostini¹, Mauricio Bustamante², Foteini Oikonomou³, Elisa Resconi*

SFB 1258

TECHNISCHE

UNIVERSITÄT MÜNCHEN

> Dark Matter Messengers

Outline

- What is $PLE\nu M$?
- Why PLE ν M?
- Prospects for point-source searches
- Prospects for diffuse neutrino flux characterization
- Summary

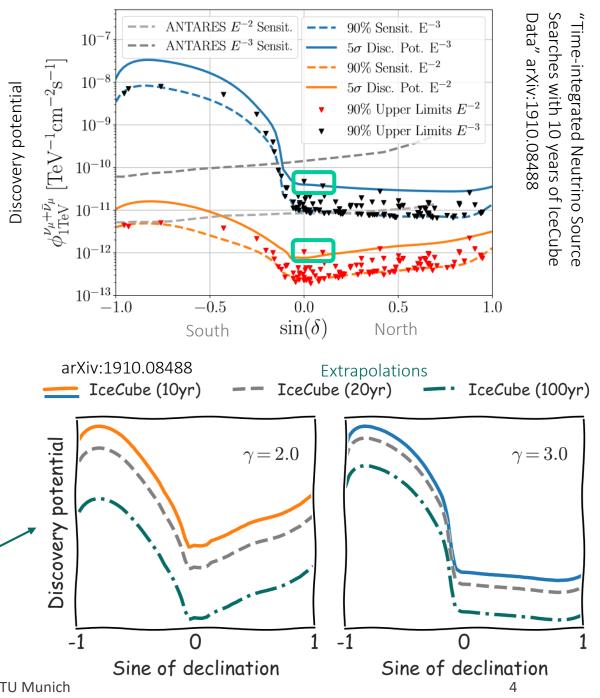
What is $PLE\nu M$?

- $PLE\nu M = PLanEtary neutrino (\nu)$ Monitoring system
- Concept for repository of high-energy neutrino observations of current and future neutrino telescopes:
 - Combine data sets with different field of views to cover the whole sky offline and in real-time
 - Provide a platform for easy collaborative work between all contributing experiments
- Current approach:

Combine exposure from telescopes at the location of P-ONE, KM3NeT, Baikal-GVD and IceCube/IceCube-Gen2

... and many more Based on work by Matthias Huber P-ONE BAIKAL-GVD PoS(ICRC2021)024 (E. Resconi) Pathfinder: STRAW PoS(ICRC2021)1092 (I.C. Rea) Underwater Neutrino Telescopes: PoS(ICRC2021)1197 (C. Spannfellner) PoS(ICRC2021)042 (P. Coyle) PoS(ICRC2021)1160 (C. Fruck) ... and many more ICECUBE PoS(ICRC2021)022 (M. Kowalski) KM3NeT ... and many more PhD thesis M. Huber, TUM

PoS(ICRC2021)002 (I. Belolaptikov)


Why PLE ν M? (1)

Open questions in Neutrino Astronomy due to limited statistics:

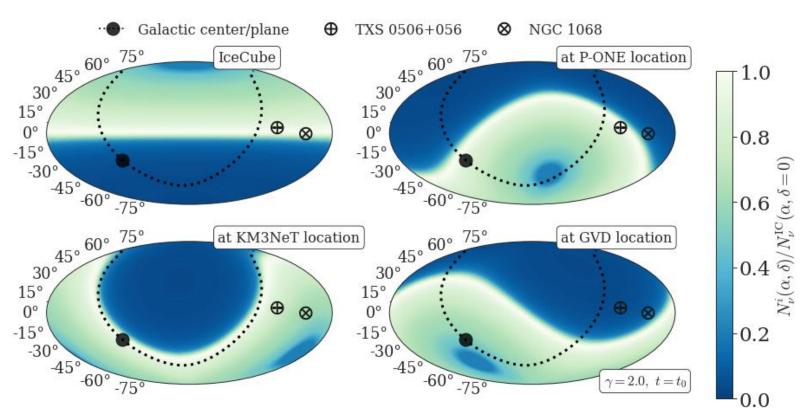
- Population of Galactic and Extragalactic Neutrino Sources?
- Distinct features in astrophysical neutrino spectrum?
- Flavor ratio of astrophysical neutrinos?
- Physics beyond the standard model with astrophysical neutrinos?

Example: IceCube point-source searches with muon neutrinos

- Best sensitivity to point-like neutrino sources around horizon
 → Sources in the South must be orders of magnitude stronger
 to be discovered
- Two neutrino source candidates: TXS 0506+056 and NGC 1068 are close to the horizon \rightarrow Are there sources we missed due to IceCube's location?
- <u>100 years of data is not enough to reach in the South a</u> <u>discovery potential as good as currently achieved at the</u> horizon

Lisa Schumacher - TU Munich

Why PLE ν M? (2)

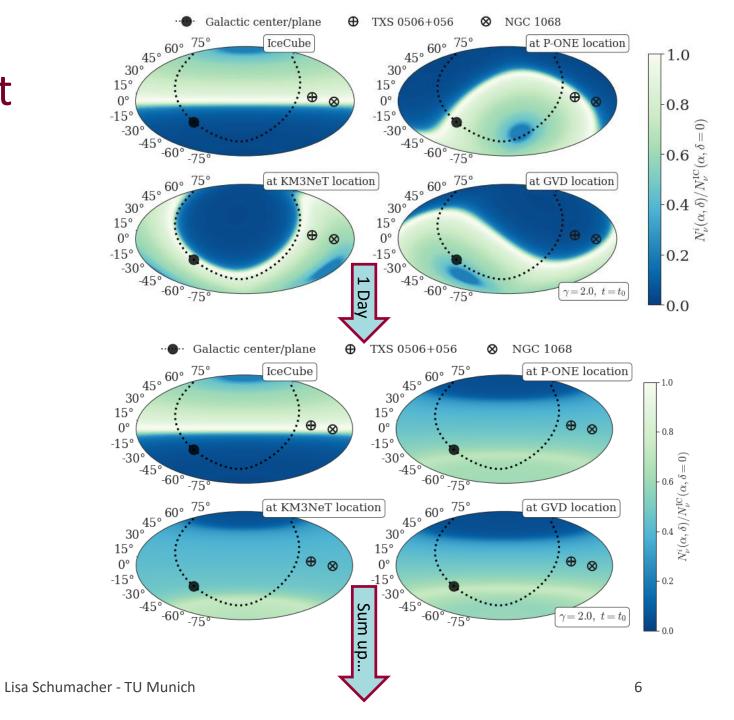

Illustration: Number of neutrinos relative to IceCube's number of neutrinos <u>at horizon</u>

Solution:

• More neutrino telescopes at different locations:

 → Three telescopes are being built or planned in the Northern Hemisphere:
 KM3NeT, Baikal-GVD, P-One; + IceCube-Gen2 at the South Pole

- Combine their field of view:
 → Reach a uniform exposure of the sky
- Combine the efforts of multiple telescopes to reach better sensitivity to astrophysical neutrinos



Concept: generate new effective areas at different locations on Earth

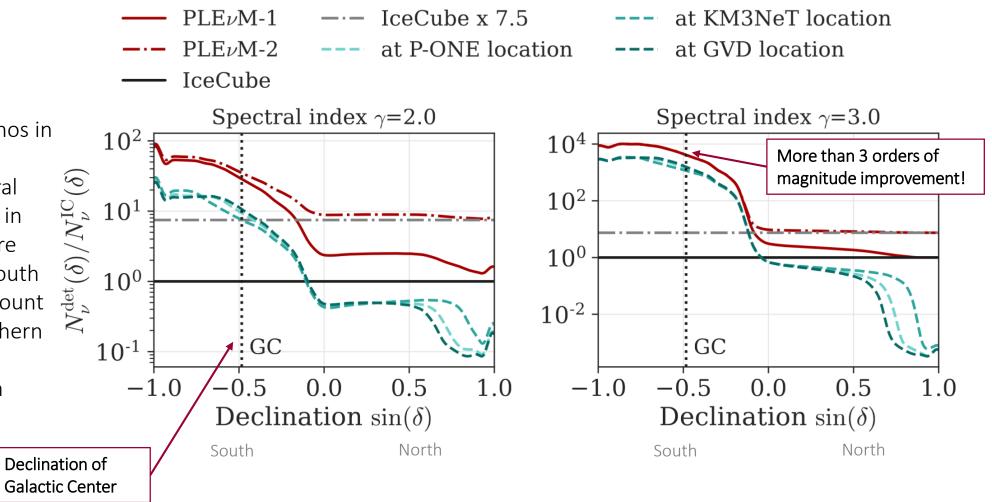
- 1) Assume IceCube's effective area for throughgoing muon neutrinos* at different locations around the globe
- 2) Integrate local effective area over one sidereal day to get a time-independent effective area per telescope
- 3) Sum up all contributions to estimate $PLE\nu M's$ effective area

Important: currently all effective areas are based on IceCube's data release*

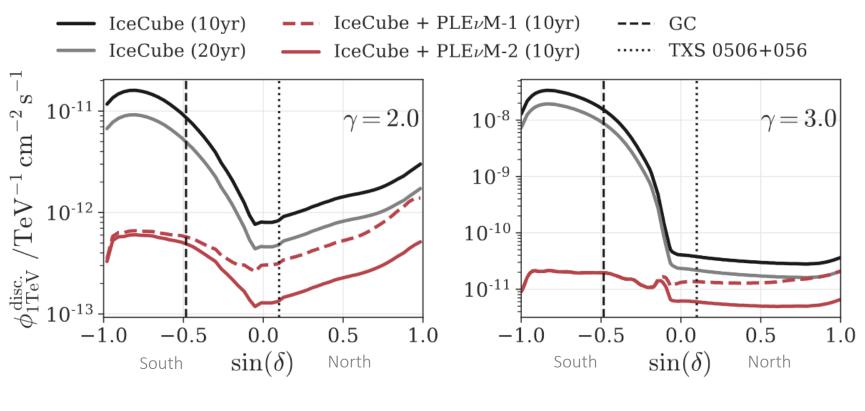
* "All-sky point-source IceCube data: years 2008-2018" http://doi.org/DOI:10.21234/sxvs-mt83

Combined effective areas of $\mathsf{PLE}\nu\mathsf{M}$

IceCube A_{eff} for through-going muon neutrinos


<u>PLEvM-1</u>: equal contributions of detectors at IceCube, KM3NeT, P-ONE, Baikal-GVD locations <u>PLEvM-2</u>: replace IceCube's contribution with Potential future telescope at South Pole: 7.5 x IceCube A_{eff}^*

* Based on 5x better discovery potential for point-like sources (IceCube-Gen2: The Window to the Extreme Universe, arXiv:2008.04323)

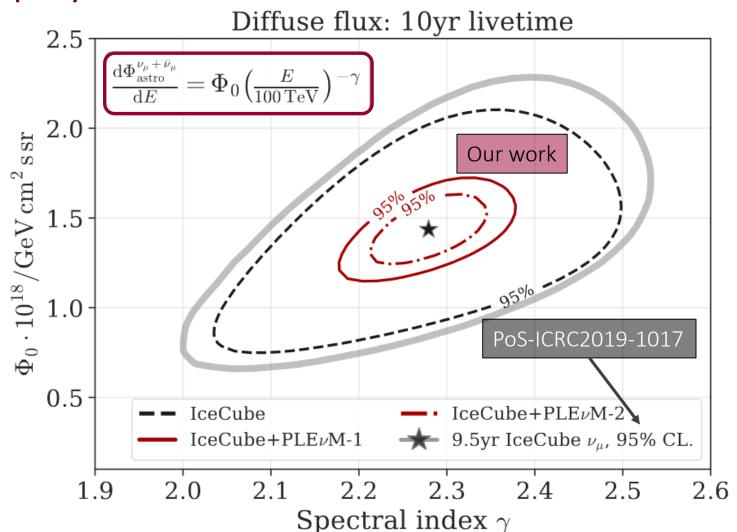

Expected number of neutrinos relative to IceCube

- Significant increase of number of muon neutrinos in Southern Hemisphere, especially for soft spectral indices due to detectors in the Northern Hemisphere
- Larger detector at the South Pole adds significant amount of neutrinos to the Northern Hemisphere
- (more spectral indices in back-up)

Prospects: Point-source searches

- Discovery Potential (DP): Neutrino flux per source with power-law spectrum* needed to claim a 5σ discovery
- Larger A_{eff} /livetime \rightarrow better (=smaller) DP flux
- Scale known DP of IceCube to PLE ν M: $\Phi_{PLE\nu M}^{disc} \propto \Phi_{IC}^{disc} \cdot A_{eff}^{-0.8}$ (more info in backup)
- Extraordinary improvement in Southern hemisphere, especially for soft spectral indices
- Significant improvement in Northern Hemisphere with $PLE\nu M-2$

*Neutrino flux per source: $d\Phi/dE = \Phi^{\text{disc.}} \cdot (E/1 \text{ TeV})^{-\gamma}$ at 1 TeV


Discovery potential of "Time-integrated Neutrino Source Searches with 10 years of IceCube Data" (black) arXiv:1910.08488

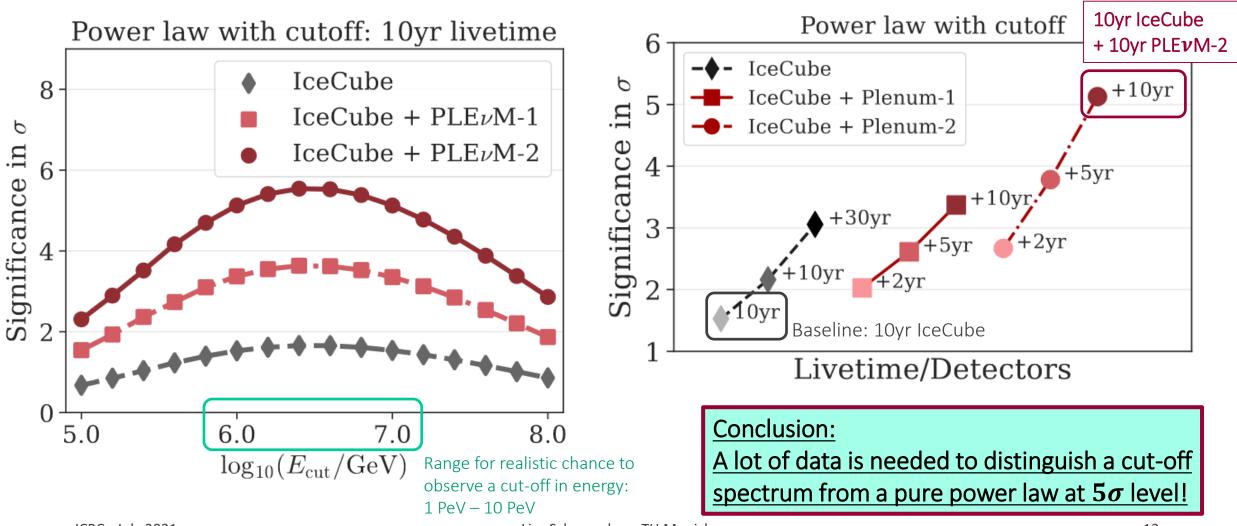
Prospects: Diffuse astrophysical neutrino flux

 Binned maximum likelihood method using poisson statistics and Asimov data/Wilks' theorem

 $\Lambda(data \ k \ | \ hypothesis \ \mu) = \prod_{bin \ i} \frac{\mu_i^{k_i}}{k_i!} \cdot \exp(-\mu_i)$

- Analysis strategy similar to IceCube's method, but without systematic uncertainties
- Model parameters:
 - Atmospheric neutrino background calculated with MCEq*
 - Astrophysical flux normalization Φ_0
 - Spectral index γ
- Verified our approach: 95% C.L. contours (black) comparable to IceCube's diffuse analysis contours (gray)
- Expect significant improvement of contours with PLE ν M-1/2 (~factor 2 in both parameters)

*https://github.com/afedynitch/MCEq with hadronic model Sibyll-2.3c and atmosphere: NRLMSISE-00 Model2001


Lisa Schumacher - TU Munich

Beyond the single power law: exponential cutoff

Diffuse flux with cutoff: 10yr livetime 8.0 Baseline model parameters: ٠ astro $=\Phi_0\left(\frac{E}{100 \text{ TeV}}\right)$ $\gamma \cdot \exp($ 5% 7.5 Atmospheric neutrinos with MCEq 6 Astrophysical flux normalization • 7.0 $1.5 \cdot 10^{-18} / (\text{GeV cm}^2 \text{ s sr})$ $\log_{10}(E_{\mathrm{cut}}/\mathrm{GeV})$ 6.5 • Spectral index $\gamma = 2.0$ <u>Cut-off energy $E_{cut} = 1 \text{ PeV} \int \mathbf{X}$ </u> • 6.0 Estimated significances wrt. pure power law: 5.5 IceCube: $< 2\sigma$ 5.0 PLE ν M-1: 3σ IceCube+PLE ν M-2 IceCube PLEνM-2: 5σ 4.5۲ IceCube+PLE ν M-1 4.01.25 2.252.501.001.50 1.752.002.75Spectral index γ

Beyond the single power law: exponential cutoff

Significance vs. cut-off energy

Significance vs. livetimes, $E_{cut} = 1$ PeV

Lisa Schumacher - TU Munich

Summary

- $PLE\nu M$ is a concept for combining data and efforts to improve sensitivity to astrophysical neutrinos compared to single observatories
- Feasibility and performance study based on IceCube's effective area and locations of future telescopes: P-ONE, KM3NeT, Baikal-GVD

Key results

Point-like sources:

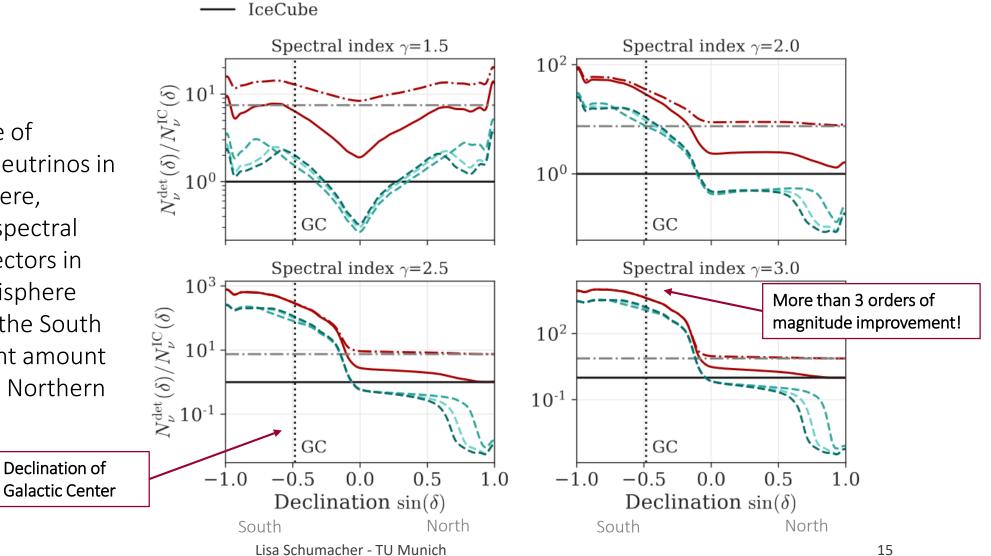
- Discovery potential in the South profits significantly from combination of P-ONE, KM3NeT, Baikal-GVD
- Discovery potential in the North profits significantly from a large detector at the South pole like IceCube-Gen2

Diffuse flux:

- Realistic chance to observe a cut-off between 1 and 10 PeV in astrophysical neutrino spectrum with $\text{PLE}\nu\text{M}$
- Large amount of data combined from all neutrino telescopes needed to distinguish a power law with cut-off from a pure powerlaw on 5σ level

Outlook

- Galactic/LHAASO sources
- Galactic plane diffuse emission
- Extragalactic source populations
- Transient neutrino sources
- Neutrino flavor, Particle physics, ...
- Public code currently under development: <u>https://github.com/mhuber89/Plenum</u>


Back up slides

Expected number of neutrinos relative to IceCube

 $PLE\nu M-1$

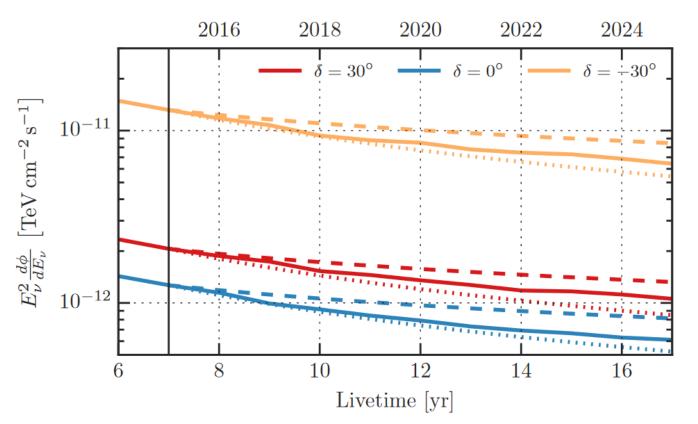
 $PLE\nu M-2$

- Significant increase of number of muon neutrinos in Southern Hemisphere, especially for soft spectral indices due to detectors in the Northern Hemisphere
- Larger detector at the South Pole adds significant amount of neutrinos to the Northern Hemisphere

at KM3NeT location

at GVD location

 $-\cdot$ – IceCube x 7.5


at P-ONE location

Prospects: Point-source searches

- Scaling of discovery potential with time/effective area: See PhD theses of
 - S. Coenders (TUM)
 - R. Reimann (RWTH)
 - M. Huber (TUM)

$$\frac{\phi_0^{\text{disc.}}(T_{\text{live}} = T_0)}{\phi^{\text{disc.}}(T_{\text{live}} = T_1)} = \begin{cases} \left(\frac{T_0}{T_1}\right)^{-0.8} & \text{if } A_{\text{eff}} = \text{const.} \\ \left(\frac{A_{\text{eff},0}}{T_{\text{eff},1}}\right)^{-0.8} & \text{if } T_{\text{live}} = \text{const.} \end{cases}$$

- Motivation:
 - Scaling with 1/T expected for analysis limited by signal statistics
 - Scaling with $1/\sqrt{T}$ expected for analysis limited due to background

 $d\Phi/dE = \Phi^{\text{disc.}} \cdot (E/1 \text{ TeV})^{-\gamma}$ at 1 TeV

ALL-SKY SEARCH FOR TIME-INTEGRATED NEUTRINO EMISSION FROM ASTROPHYSICAL SOURCESWITH 7 YR OF ICECUBE DATA arXiv:1609.04981