

BlaVar: a numerical study of long-term blazar variability

Markos Polkas (National & Kapodistrian University of Athens)

In collaboration with: M. Petropoulou (NKUA), G. Vasilopoulos (Unistra), A. Mastichiadis (NKUA), C. M. Urry (Yale), P. Coppi (Yale), C. Bailyn (Yale)

Credits : Biplob Sarkar 2011

- Radio-loud Quasars (very luminous AGNs with strong radio emissions)
- Jet pointing directly at us
- Multiwavelength emission : radio to γ-rays (TeV)
- Dichotomy: Flat Spectrum Radio Quasars (FSRQs) vs BL Lac Objects.

Observations & Motivation

Fermi - LAT : 0.1 - 300 GeV gamma-rays, all-sky monitoring, ~11 yr operation

SMARTS: optical bands (B,V,R,J,H,K)

Long-term OIR/y-ray light curves

The one-zone leptonic model

Parameters of the model R (cm) Magnetic field B (\mathbf{G}) $\gamma_{\rm min}$ $\gamma_{\rm max}$ BLR pElectron compactness ι_{e} EC lext Ext. photon compactness T_{ext} (K) emitting δ **Doppler factor** region disk $\theta_{\rm obs}$ (deg) $t_{\rm esc} = R/c$ BH

Credits: Tramacere 2011

Probability Density Function (PDF) of γ-ray fluxes

Crucial: different cooling regimes \rightarrow sensitive to the selection of the steady state parameters

BL Lac PKS 2155-304 : le(t) simulation

BL Lac PKS 2155-304 : B(t) simulation

Magnetic field variations always produce spectral changes

FSRQ 3C 273: Time-dependent cooling

Magnetic field: B(t)

External Photon field: lext(t)

FSRQ 3C273: Combining le(t) with lext(t) variations

Coefficient of Variance and Fractional Variabilities

• Captures the general trend with frequency

Discrete Correlation Function (DCF)

Conclusions & Future Work

- Single parameter variations are highly unlikely to describe all the long-term timing properties of any blazar.
- Non-zero time lags can be produced but an indirect second zone (distant source of external photons)
- One-zone steady-state models can be put into test via timing analysis of long-term variability for individual blazars

- → More detailed thermal components for accurate color variations
- Weighted two parameters variations ->
 More complex analytical transformation
 to describe gamma-rays
- → Sample of highly resolved sources with polarimetry (where the emission site is localized) to test models.

THANK YOU, for your attention!

Distributions of Parameter Values

Color-Magnitude Diagrams

Summary Table

		γ -ray PDFs	FV/CV			DCF	B - J vs. J-band	$B - J$ vs. γ -rays
			OIR	X-rays	γ-rays	(J-band vs. γ -rays)		
		(1)		(2)		(3)	(4)	(5)
PKS 2155-304	l _e	?	1	>	>	×	1	1
	В	?	1	7	>	×	×	×
	δ	1	1	1	1	?	×	×
3C 273	l _e	1	1	7	1	×	X	×
	В	×	1	1	7	×	?	1
	δ	1	1	>	7	×	×	×
	l _{ext}	1	1	1	7	?	1	×
	$l_e + l_{\text{ext}}$	×	1	1	1	?	×	X