Prospects for Neutrino Astrophysics with Hyper-Kamiokande

Takatomi Yano ICRR, University of Tokyo For the Hyper-Kamiokande Collaboration

37th International Cosmic Ray Conference 20th July 2021. Virtual Conference

Hyper-Kamiokande Project

- Next generation large water Cherenkov detector with 258 kt ultra pure water, providing 188 kt fiducial vol.
 - Including J-PARC neutrino beamline at Ibaraki, Japan.
 - It will be constructed **600 m** under the Nijyugo-yama mountain at Kamioka, Gifu, Japan (**1600 m.w.e.**).
 - Japanese construction budget was approved in 2020.
 - The operation will start in 2027.
- The detailed detector design is now being settled.
 - Inner detector (ID)
 - 40,000 of 20" PMT
 - 40% photocathode coverage (PC40%)

or

- 20,000 of 20" PMT & thousands of multi-PMT modules
 - 20% and more photocathode coverage
- Outer detector (OD)
 - 3" PMT and wavelength shifting plates
- See also: Y. Itow, NU 1118

Feature of the HK detector

- The property of neutrinos can be measured with the charged lepton generated by reactions in ultra pure water.
 - $V + e^- \rightarrow V + e^-$ (electron scattering)
 - $v_{\mu} + n \rightarrow p + \mu^{-}$ (charged-current interaction)
- The energy, position, time, direction and type of the particle can be identified at each event, with charge and time from PMT hits.
- "Real Time" and "Event-by-Event" measurement is possible.
- This will give capability for wide variety of neutrino physics.
 - Solar neutrino
 - Supernova neutrinos
 - Atmospheric neutrinos
 - Accelerator neutrinos

- The Sun burns through nuclear fusion reactions, i.e. pp-chain and CNO-cycle, emitting neutrinos.
- Only neutrinos can bring out information of "today's" status of solar center.
- With Hyper-K, ⁸B neutrino is the main observation target. A large statistics is expected :

 $\frac{130 \text{ events/day, } E_{e,kin} > 4.5 \text{MeV}}{(15 \text{ events/day in SK-I} \sim \text{IV})}$

4

Solar neutrino observation

- Importance of solar *v* measurements in particle physics and astrophysics:
 - Precision measurement, $\Delta\,m^2_{21}$
 - Day/Night asymmetry
 - Tension between solar best Δm_{21}^2 and reactor best value.
 - Solar nu spectrum up-turn
 - Variation of solar v flux
 - Discovery of hep neutrino

Solar Neutrino Day/Night Asymmetry

- Non-zero D/N asymmetry of solar v flux caused by terrestrial matter effect is indicated by SK. [PRL 1212, 091805(2014)]
- The D/N asymmetry causes smaller Δm_{21}^2 value in solar neutrino analysis, when compared to reactor neutrino analysis.
 - ~1.4 σ tension (It was 2 σ at 2019.)
 - Y. Nakajima (SK collaboration), Neutrino 2020.
- With Hyper-K statistics, we can investigate the terrestrial matter effect, and the tension between solar best Δm_{21}^2 and KamLAND best Δm_{21}^2 .
- We can test if CPT is violated,
 i.e. P_{ve->vx} and P_{ve->ve}.

Solar Neutrino Day/Night Asymmetry

<u>Δm² separation, only w/ HK</u>

- New solar Δm_{21}^2 , 6.1x10⁻⁵ eV² (Super-K, 2020) makes the separation between solar and reactor best value Δm_{21}^2 difficult for Hyper-K.
 - It is still possible to prove if the Day/Night asymmetry = earth matter effect with $>5 \sigma$ sensitivity after **10 years** measurement.
- In case of Δm_{21}^2 of $4.8 \times 10^{-5} \text{ eV}^2$ (Super-K, 2019), it is still possible to separate solar and reactor best above 4σ . (10 yrs, 0.3% sys. err.)

Solar Spectrum Up-turn

What is solar up-turn?

- A continuous variation of the solar neutrino survival probability, at the middle energy of MSW-dominated and vacuumoscillation-dominated energies.
 - It is expected but not directly observed yet.
 - There is room for new BSM physics.

What is HK capability?

- Hyper-K will separate the cases with upturn and w/o up-turn by ~ 3 or 5 sigma.
 - **4.5 or 3.5** MeV analysis threshold is assumed in electron kinetic energy equivalent.
 - Effect of photo-coverage is limited, here.

Solar Spectrum Up-turn

What is solar up-turn?

- A continuous variation of the solar neutrino survival probability, at the middle energy of MSW-dominated and vacuumoscillation-dominated energies.
 - It is expected but not directly observed yet.
 - There is room for new BSM physics.

What is HK capability?

- Hyper-K will separate the cases with upturn and w/o up-turn by ~ 3 or 5 sigma.
 - **4.5 or 3.5** MeV analysis threshold is assumed in electron kinetic energy equivalent.
 - Effect of photo-coverage is limited, here.

Other solar ν topics

hep process neutrino

- Undiscovered solar neutrinos, with small branching ratio.
- With Hyper-K 10 years data, there is chance to discover.
- \rightarrow To test the solar models.
 - 1.8 ~ 3 σ , 10y (PC40%)

Variation of solar neutrino flux

- High statistics observation with Hyper-K will help to observe the variation of solar neutrino flux.
- Hyper-K: 130 [events/day], $E_{e, kin} > 4.5 MeV$
 - Super-K: 15 [events/day]

Supernova Neutrinos

Core-collapse supernova emits all kinds of neutrinos.

- 11 neutrino events by Kamiokande from SN1987A at 50 kpc (LMC).
- 50k ~ 80k events are expected in HK from a SN at 10 kpc (galactic center).

Physics Motivation

- Core-collapse SN physics
 - Explosion mechanism
 - Proto-neutron star formation
 - Black hole formation
- Neutrino physics
- Multi-messenger analysis
 - SN alert with directional information
 - With gravitational wave, gamma-ray, X-ray, telescope…

SN Features

- Supernova neutrino observation
 - Precise SN neutrino time profile
 - Energy spectrum measurement
 - Investigation of the SN mechanism (SASI/Rotation/Convection)
- Supernova model discrimination
 - Model discrimination between five supernova models are recently studied.
 - <u>https://arxiv.org/abs/2101.05269</u>
 - With 300 events, corresponds to supernova at 60-100 kpc, >97% SN model identification.
- Proving dim supernova/BH formation at nearby galaxy.
 - By detecting the neutrinos from nearbygalactic supernovae.

SRN with HK

Supernova Relic Neutrino (SRN)

- Diffused neutrinos coming from all past supernovae.
- Not discovered but **promising** extra-galactic ν .

Physics of SRN

- Test of star formation rate
 - Factor ~2 discrepancy between rates of formations and SNe.
- Energy spectrum of supernova burst neutrinos
 - Temperature inside the SN
- Extraordinary SN
 - BH formation, dim supernova

SRN with Hyper-K

- SRN can be observed by HK in 10y with ~70±17 events with > 4 σ non-zero significance (photo-coverage 40%).
 - ~40±13 events and 3σ for PC20%.
- We will go beyond the discovery and aim to measurement of SRN.

Summary

- Hyper-K project is a next generation large water Cherenkov detector.
 - Design Report is available. Technical Report will be published soon.
 - https://arxiv.org/abs/1805.04163
 - Hyper-K observation will start in 2027.
 - Japanese construction budget was approved by MEXT in Japan, in 2020.
 - We are in construction phase!
- Astrophysical neutrino measurements is one of the features of Hyper-Kamiokande.
 - Solar neutrinos
 - Hep neutrino, seasonal variation, up-turn etc…
 - Supernova neutrino
 - Energy and time spectrum measurement, SN alarming etc..
 - Supernova Relic Neutrino
 - Supernova and star formation rate models, extraordinary SN
 - Neutrino observation for other astrophysical events
 - E.g. follow-up observation with gravitational-wave events.