Robust constraints on Lorentz Invariance Violation from H.E.S.S., MAGIC and VERITAS data combination

Christelle Levy

Julien Bolmont, Sami Caroff, M. Gaug, A. Gent, D. Kerszberg, T. Lin, M. Martinez, L. Nogues, N. Otte, C. Perennes, M. Ronco, T. Terzic

July 20, 2021

Lorentz Invariance Violation (LIV)

Some quantum gravity (QG) models predict a modified dispersion relation of photons in vacuum such that their **speed would be energy-dependent**.

$$E^{2} = p^{2}c^{2}\left[1 \pm \sum_{n=1}^{\infty} \left(\frac{E}{E_{QG}}\right)^{n}\right] \longrightarrow v_{n}(E) = c\left[1 - (\pm)\frac{n+1}{2}\left(\frac{E}{E_{QG}}\right)^{n}\right]$$

 \rightarrow Constrain the QG energy scale $E_{QG} \sim E_P \sim 10^{19} GeV$

The LIV effect would translate, amongst others, into a time-delay between the arrival time of photons with different energies.

$$\Delta t \simeq \frac{n+1}{2} \frac{E_1^n - E_2^n}{E_P^n} f(z) \qquad \longrightarrow \qquad \tau_n = \frac{\Delta t_n}{\Delta E_n} = \pm \frac{n+1}{2H_0 E_{QG}^n} f(z)$$

f(z) is a model-based distance function accounting for cosmological effects.

Hey ! Speeding

Astrophysical sources

Measured delays maximized for sources:

- At large distances
- With large energy range
- + High variability for precision

Pulsars

- + high variability, stable, large E spectrum
- very local

Gamma Ray Bursts (GRBs)

- + high variability, large z, large E spectrum
- random and difficult to catch

Flaring Active Galactic Nuclei (AGNs)

- + large z, large E spectrum, easier to catch
- random, smaller variability

 \rightarrow Cosmological sources + TeV gamma-rays

H.E.S.S. + MAGIC + VERITAS - Goals

- Combine all available data from H.E.S.S., MAGIC and VERITAS in a joint analysis
 - \rightarrow Better limits on QG energy scale with increased statistics
- Use different types of sources with different intrinsic characteristics
 - → Several redshifts and source types help to disentangle between LIV and intrinsic variability of sources
 - → Prepare the CTA era with the combination of data sets from 2 observation sites

Christelle Levy, ICRC 37th edition, July 2021

Working group tasks

- Development of a common software in order to simulate, analyse and combine data-sets from different experiments: « LIVelihood ».
 For now we work on simulations in order to calibrate and validate the method including:
 - Instrument response functions for each instrument and each source
 - Computation and combination of systematics from different instruments
 - Different models on redshift dependency (LIV from Jacob & Piran, Deformed Special Relativity)
- List of sources (only published sources are studied) such that all classes are represented with different characteristics:
 - ♦ AGN
 - * Markarian 501 (MAGIC) flare of 2005
 - * PG 1553+113 (H.E.S.S.) flare of 2012
 - * PKS 2155-304 (H.E.S.S.) flare of 2006
 - Pulsar
 - * Crab (MAGIC, VERITAS)
 - * Vela (H.E.S.S.)
 - ♦ GRB
 - * 190114C (MAGIC) afterglow

Combination method

Separate photon list in 2 sub-sets \rightarrow low energy vs. high energy light curves (time distributions)

* Low energy light curve taken as LIV-free: $\tau_n = 0$

- Use maximum likelihood method to estimate the mean delay separating the 2 sets
- Similar treatment for pulsars but time is replaced by phase

Combination \rightarrow Instrument Response Functions vary for each source and instrument

- A tabulation method is used to fully take into account IRFs without any simplification
 - * Pdf and normalisation are precomputed and stored in tables for each source
 - * Then retrieved by interpolation over the tables during the likelihood maximisation

Calibration - individual sources

- Plots of injected lag in the simulations vs. reconstructed lag from the likelihood method (J&P model, linear)
- Worst case reaches at maximum 8% error on the reconstruction
- **GRB highly asymmetric** \rightarrow expected from the highly asymmetric light curve (power law)

Calibration - combined sources

- Plots of injected lag in the simulations vs. reconstructed lag from the likelihood method (J&P model, linear)
- Worst case reaches at maximum 3% error on the reconstruction

Systematics

- Systematics effects are propagated to the lag using a profile likelihood method
- Each source of systematics is added as a nuisance parameter to the likelihood

$$L(\lambda_n, \overrightarrow{\theta}) = L_{data}(\lambda_n, \overrightarrow{\theta}) + L_{data}(\overrightarrow{\theta_C}) + L_{\gamma}(\theta_{\gamma}) + L_{BP}(\overrightarrow{\theta_{BP}}) + L_{ES}(\theta_{ES}) + L_{z}(\theta_{z})$$

- Systematic types:
 - Low energy template statistics (dominant in linear regime)
 - Power law index uncertainty (dominant in quadratic regime)
- Background proportion uncertainty
- Energy scale uncertainty (dominant in quadratic regime)
- Redshift uncertainty

Upper limits on E_{QG} (linear) Impact of systematics

Combinations are dominated by the most stringent source: GRB >> AGN >> PSR

Systematics bring down the limits by a factor ~ 2

Christelle Levy, ICRC 37th edition, July 2021

Upper limits on E_{QG} (linear) Comparison with papers

- Similar results than what has been found in previous LIV analysis
- Different evaluation method of IRF and systematics, simulation based study the new limits are less constraining than the ones in older papers

Upper limits on E_{QG} (linear) Redshift dependency

Visible impact of the redshift model on limits for sources at large z:

- The J&P model tends to emphasize contribution from large redshift sources
- The DSR model tends to balance source's contribution
- Pulsars do not depend on lag-distance models \rightarrow reference for comparison

Christelle Levy, ICRC 37th edition, July 2021

Conclusion

- Combination code for the LIV is ready and operational
- Fully take into account IRFs thanks to a tabulation method
- Deep study of systematics dominated by template stat. (linear), energy scale & PL index (quad.)
- Limits are found to be less constraining than in previous studies due to a different evaluation method of systematics and the simulation based study
 - Calibration shows good reconstruction with errors of a few percent
- Combinations are dominated by the most stringent source in the sample
- Lag-distance models have an important impact on combinations: J&P emphasizes large z sources while DSR balance contributions
- Next step: use the method to combine all the available data collected by H.E.S.S., MAGIC and VERITAS