Science Case and Detector Concept fo the ARIANNA High Energy Neutrino Telescope at Moore's Bay, Antarctica Steven W. Barwick, UC-Irvine, for the ARIANNA collaboration

S.Barwick, POS(ICRC20

Going to ultra-high energies

Going to ultra-high energies

Low interaction cross section of neutrinos 10-5 Very low neutrino flux 10^{-6} Very large volumes needed for reasonable sr⁻¹] 10^{-7} $E^2\Phi$ [GeV cm⁻² s⁻¹ 10^{-8} 10^{-9} 10-10 10^{-11} 10^{-12} 10^{15} 10^{14}

rates

neutrino spectrum IceCube **GZK** neutrino flux 10% protons in UHECRs (Auger), m=3.4, van Vliet et al. allowed from UHECRs (Auger), van Vliet et al. UHECRs TA combined fit (1σ) , Bergman et al. 10^{16} 10¹⁹ 1017 10^{18} 10 neutrino energy [eV] optical

Going to ultra-high energies

- Low interaction cross section of neutrinos
- Very low neutrino flux
- Very large volumes needed for reasonable rates

Solution: radio technique

- Large volumes at no cost: Antarctic ice
- Ice transparent to radio waves (L ~ 1km)
- A single radio station has 1km³ effective volume (comparable to IceCube)

stian Glaser, VLVNT 2021

ARIANNA Detector Concept

ARIANNA Station

ARIANNA white paper: arXiv:2004.09841

ARIANNA at Moore's Bay, Antarctica (200 stations)

Direction and shower energy resolution

nce between reconstructed and true angular direction

- S. Barwick, PoS (ICRC2021) 1151
- G. Gaswint, UC Irvine, PhD, 2021

Shower Energy Resolution

Verification Studies of Polarization

Pulser Studies at South Pole

Cosmic Ray Polarization

S. Barwick, PoS (ICRC2021) 1151

L. Zhao, PoS (ICRC2021)1156

Background Considerations

uture radio arrays are designed to increase sensitivity by 10⁴ relative to limits by pilot arrays such RIANNA HRA and ARA.

Aust identify and reject rare, and potentially, unforeseen background events

ecent work

- Atmospheric muon induced EM showers within the ice rates are thought to be small in ARIAI but the errors in the calculation are considerable (D. Garcia-Fernandez, et al. arxiv 2003.134)
- Radio pulse that is created in the atmosphere by CR, and reflects from the bottom water-ice s
 - Near vertical CR will not be detected by upward LPDA (footprint too small)
 - Reconstructed vertex of emission will be outside the ice medium
- Shower cores that reach the ice surface will induce an Askaryan-like signal at the surface. See S Kockere et al, contribution 101319. It too can reflect off the bottom water-ice surface.

CR Shower Core that reach surface

Relatively little end survives to sea-lev

Relatively small fra particles in residua are close enough t shower axis to pro Askaryan emission

Good understandi reflective properti water-ice surface, combined with DN place vertex within of surface, where interactions are ex

Summary

- autonomous, independent, shallow detector stations
- proof-of-concept of radio technique to measure UHE neutrinos
- shallow station design part of RNO-G and IceCube-Gen2
- Neutrino direction reconstruction
 - in-situ verification of
 - signal direction and ice properties (syst. uncertainty 0.3°)
 - polarization (syst. uncertainty 1°-2.7°)
 - end-to-end test of reconstruction using MC simulations
 - 3° statistical uncertainty for all triggered events
- Good angular resolution of shallow detector stations will enable
 - multi-messenger alerts for follow up observations
 - source search

Rare, or unforeseen, BGs associated with CRs, etc must be studied and mitigation strategies demonstrated. The ARIANNA detector provides this opportunity.

Backup Slides

The End

.

Experimental Landscape

ANNA test bed

2 shallow stations at Moore's Bay + South Pole

١

x 200m deep stations at South Pole

o technology developed and ied; hardware proven reliable

RNO-G

- 35 detector stations in Greenland
- first deployment summer 2021 **ARIANNA-200**
- 200 shallow detector stations at Moore's Bay

future

funding decision pending

IceCube-Gen2

- 300+ detector static South Pole
- hybrid array of deep shallow stations

In-situ test of signal direction reconstruction

- Calibration measurement at South Pole
 - Transmitter lowered into SPICE hole (1700m deep)
- Ice properties well understood
 - Direction measured independently by dipoles (Vpol) and LPDAs (Hpol)
 - Bending of signal trajectories in firn corrected with < 0.3° precision

ARIANNA collaboration, JINST 15 G. Gaswint, PhD

In-situ test of signal direction reconstruction

Calibration measurement at South Pole

- Transmitter lowered into SPICE hole (1700m deep)
- Ice properties well understood
 - Direction measured independently by dipoles (Vpol) and LPDAs (Hpol)
 - Bending of signal trajectories in firn corrected with < 0.3° precision

6m – 2m -200 -400-600 depth (m) -800 -1000 -1200-1400tilt in borehole -1600 (not to scale) 17m

-500

-250

distance (m)

0

ARIANNA collaboration, JINST 15

G. Gaswint, PhD

Measurement even sensitive to 1° tilt in borehole below 1000m