

Nearly a Decade of Cosmic Ray Observations in the Very Local Insterstellar Medium

By Jamie Sue Rankin Princeton University

ICRC, July 16, 2021

Space Physics at Princeton

Dawn of the Interstellar Mission

New Mission Objective:

"[To] extend the NASA exploration of the solar system beyond the neighborhood of the outer planets to the outer limits of the Sun's sphere of influence, and possibly beyond."

07/16/2021

Jamie Sue Rankin – Cosmic Rays in the Very Local Interstellar Medium

Diagram of the Heliosphere. ESA. June 2008. http://sci.esa.int/ulysses/42898-the-heliosphere/

Cummings et al. 2016, ApJ, 831:18

Space

Interstellar Arrival: Galactic Cosmic Rays

Space

hvsicsat

Jamie Sue Rankin – Cosmic Rays in the Very Local Interstellar Medium

Burlaga, Ness, & Stone 2013, Science, 341, 147

- Field strength increased from 0.2 nT to 0.45 nT
 - consistent with expected interstellar values
- Direction did not change
- "heliosheath depletion region" or the interstellar medium?
- Voyager 1 crossed the boundary 5 times
 - between days 210 and 238 of 2012

- Outer heliosphere plasma density
 - 0.002 cm⁻³
- Expected interstellar plasma density
 - 0.1 cm⁻³
- Electron plasma
 oscillation frequency
 - 2.6 kHz

$$f_{\rm p} = 8980 \sqrt{n_e} \,\mathrm{Hz},$$

- Observed plasma density
 - 0.08 cm⁻³

Gurnett et al. 2013, Science, 341:1489

Space Physics at Princeton

Heliopause Crossing

"Space is Arbitrary" by Tom Gauld

• Voyager 1

- August 25, 2012 @ ~122 AU
- Magnetic field strength: ~0.46 nT
- Plasma density: ~0.055 cm⁻³
- Heliopause likely shrinking
- Voyager 2
 - November 5th, 2019 @~119 AU
 - Magnetic field strength: ~0.68 nT
 - Compressed Fields Towards Ecliptic South
 - Plasma density: ~0.039 cm⁻³
 - Temperature ~30,000 to 50,000
 - Heliopause likely expanding

Washimi et al. 2017, ApJL, 846:L9

07/16/2021

Heliopause Crossing: Energetic Particles

Stone et al. 2019, NatAst 3:1013

07/16/2021

Space

Physics_{at} Princeton

Jamie Sue Rankin - Cosmic Rays in the Very Local Interstellar Medium

Space 9hvsics at Drinceton

"The observation of cosmic-ray intensity variation at the heliopause is a partial surprise. We expect the cosmic-ray intensity to rise towards the heliopause, and there may or may not be, depending on the particle diffusion coefficient, a radial gradient in the outer heliosheath. However, no one predicted there is a sharp, almost step-wise, increase of cosmic rays at the heliopause."

Zhang et al. 2015, Phys. Plasmas 22:091501

Strauss et al. 2013, ApJL, 765:L18

07/16/2021

Space Physics at Princeton

Solar Modulation Beyond the Heliopause?

Luo et al. 2016, AIP Conf. Proc., 1720:070005

Jamie Sue Rankin – Cosmic Rays in the Very Local Interstellar Medium

Low-Energy Interstellar Spectra!

- Lowest energies typically measured at 1 AU: ~ few GeV
- Voyager "electrons"
 - Consistent with spectra derived from solar wind observations [Potgeiter et al. 2015]
- Unmodulated spectra?
 - Remarkably uniform flux; no clear indications of a radial gradient (so far)
 - Remarkable consistency between the two spacecraft at very different longitudes and latitudes!

Very Local Interstellar Medium (VLISM)

FACT: Voyager 1 is wandering the cosmos, beyond the reach of our sun

Learn Something New Every Day LSNED.com

- Original Definition: [Holzer 1989]
 - Local Interstellar Medium: within 100 pc of the sun
 - Very Local Interstellar Medium: within 0.01 pc of the Sun (~2000 au)

Space Physics_{at} Princeton

Very Local Interstellar Medium (VLISM)

- Original Definition: [Holzer 1989]
 - Local Interstellar Medium: within 100 pc of the sun
 - Very Local Interstellar Medium: within 0.01 pc of the Sun (~2000 au)
- New Definition: [Zank 2017]

"[The] region of the interstellar medium surrounding the Sun that is modified or mediated by heliospheric processes or material."

Beyond the Heliopause: Unfolding Magnetic Field Princeton

07/16/2021

Space

Hpsics_{at}

Jamie Sue Rankin - Cosmic Rays in the Very Local Interstellar Medium

Space Physics at Princeton Transient-Perturbed Magnetic Field

- "Shocks"
 - weak, subcritical, laminar, resistive, and quasiperpendicular.
 - 10⁷ km thick (1000 x's thicker than 1-AU counterparts)
 - small jump ratios (~1.4 in 2012; ~1.1 in 2014)
 - Likely collisional

Burlaga & Ness 2016, ApJ, 829:134

Space Physics Beyond the Heliopause: Interstellar Plasma

Gurnett & Kurth 2019, NatAst 3:1024

Galactic Cosmic Ray Anisotropy

Space

Physics at Princeton

Jamie Sue Rankin – Cosmic Rays in the Very Local Interstellar Medium

Rankin et al. 2019, ApJ 873:46

Space

Physics_{at} Princeton

Space Physics Trapping and Cooling Downstream of Shocks?

Space Physics Influenced by the large-scale structure of the Heliosphere? Princeton

Rankin et al. 2019, ApJ 873:46

Hill et al. 2020, ApJ 905:69

Rankin et al. 2020, ApJ, 895:103

Transient Propagation & Evolution

Merged Interaction Region at 79 AU

Evolution of Interaction Regions from 1 to 60 AU

07/16/2021

Space

Hpsics_{at} Princeton

Jamie Sue Rankin - Cosmic Rays in the Very Local Interstellar Medium

120

Space Physics at Princeton

Data-Driven Model of Solar Transients

Kim et al. 2017, ApJ 843:2

07/16/2021

Voyager 1 to Voyager 2 Transient

- Heliosphere-VLISM Pressure
 Balance: key unknowns
 - interstellar temperature
 & heliosheath pressure
- Rankin et al. 2019
 - $P_{Total} \sim 270$ fpa
 - Magnetic, thermal, dynamic: ~15%
 - Pickup lons: ~45%
 - ACR/GCR: ~22%
 - Remaining: ~18%
- Dialynas et al. 2020, ApJ 905:L24
 - Cassini, Voyager, & IBEX observations
 - P = 251 fpa
- Fahr et al. 2020, A&A
 642:A144

Rankin et al. 2019, ApJ 883:101

Space

Physics at Orinceton

A Perspective from the Outside-In

Jamie Sue Rankin – Cosmic Rays in the Very Local Interstellar Medium

The VLISM: A New, Exciting Regime

Space Physics at Princeton

- Notable cosmic ray observations
 - heliopause boundary
 - low-energy interstellar spectra
 - pitch-angle anisotropy
 - interstellar transients
- Significant progress made on larger heliophysics questions:
 - What determines the interaction of the Sun with the Solar System and the interstellar medium? Decadal Survey Goal 3
 - \rightarrow the relationship is a lot more dynamic than we think!
 - What can we discover about our own star by looking at it from outside-in rather than inside-out?
 - How do our interstellar surroundings influence the Sun and our Solar System?
- Open questions
 - How far beyond the heliopause does the Sun and its material influence our interstellar surroundings?
 - How do temporal changes at the Sun impact the global structure of the heliosphere?
 - Where is the cosmic ray modulation boundary?
 - What is the underlying physics that governs the cosmic ray pitch angle anisotropy?
 - What are fundamental processes that occur both within the heliosphere and throughout the universe? Decadal Survey Goal 4

Rich data set, new plasma regime; cosmic ray experts welcome!