

REPUBLIC OF CROATIA Ministry of Science and Education

MAGIC observations of HESS J1809-193 using the Very Large Zenith Angle technique at energies above TeV

Darko Zaric*, D. Green, M. Strzys, I. Vovk for the MAGIC Collaboration

Online - July 2021

ICRC 2021

Motivation

- SNRs a primary candidate for the source of Galactic CRs
 - Their environments are known to efficiently accelerate CRs to hundreds of TeV
- VHE gamma rays provide a unique probe into these extreme environments around potential PeVatron candidate sources by tracing signatures of particle acceleration through the morphology and spectrum features
- Domain above several tens of TeV has not been deeply studied by IACTs
 - Perform spectral measurements in that domain

HESS J1809-193

- It is an unidentified extended Galactic source
- Number of known astrophysical sources nearby
 - \circ one of them being SNR G11.0-0.00 coincident with the peak of the TeV emission
- Potential association with the young and energetic pulsar PSR J1809-1917
 - \circ ~ located around 0.1° from this peak
- Spectrum difficult to explain with IC emission from high-energy electrons alone
- Deep measurements at tens of TeV needed to confirm its hadronic nature

Radio continuum image at 1.4 GHz Image from <u>Castelletti et al (2016)</u>.

Multiwavelength view

- Suzaku X-ray observations confirmed the existence of diffuse hard X-ray emission
 - No signs of cooling via synchrotron emission along this distance were seen
 - contrary to expectations for a young PWN
- Using radio observations from the Karl G. Jansky Very large Array <u>Castelletti et al.</u> (2016) found no counterpart to the proposed PWN
 - Study of the interstellar medium revealed several molecular clouds at the shock front of the SNR G11.0-0.00
 - Evidence for interaction between the SNR and the clouds
 - Hadronic interactions proposed to explain the origin of the gamma-ray emission

MAGPIS 20cm radio emission

MAGIC Telescopes

- System of two Imaging Atmospheric Cherenkov Telescopes
- Located at La Palma, Canary islands
- Observing the Very High Energy gamma-ray sky
- Energy range: ~30 GeV to ~100 TeV
- Field of view 3.5°

	HESS (HGPS)	MAGIC VLZA (this work)
Observation period	2004 - 2013	2019 - 2021
Livetime - map	83 h	64 h
Livetime - spectrum	10 h	64 h
Analysis threshold	0.38 TeV	2.5 TeV
PSF _{68%}	0.08° - 0.15°	0.15°

Credit: Giovanni Ceribella

Very Large Zenith Angle Observations

- Observations of very-high-energy gamma rays
 - $\circ \qquad \text{Flux decreases rapidly} \rightarrow \text{low count rates}$
- Solution: increase observation time or increase the collection area
- To increase collection area:
 - Build bigger telescope arrays
 - Observing with Very Large Zenith Angles
- Observations above ~60° zenith
- Increase in collection area ~km2
- Energy threshold ~TeV

Skymap

- Relative flux map as seen by MAGIC above 3 TeV
- Green solid lines represent the MAGIC 3, 5 and 7 σ contours
- Green dashed line represents R₆₈ of this study
- Red dashed line represents R₆₈ of eHWC J1809-193 <u>Abeysekara et al. (2020)</u>

Source modeling

- Standard IACT analysis uses source and background control region to extract spectral parameters
 - Usually only suitable for point like sources
- Special analysis tool in MAGIC: Maximum likelihood fit of the source model to the sky image

Likelihood scan

- Maximum likelihood scan performed to obtain the source location and extension
- 2D symmetric Gaussian preferred over Point Source and Disk spatial model
- Contours for the 2D plot represent the 1 σ(purple), 2 σ (blue), 3 σ(yellow) errors
- 1D plots the vertical lines represent the 1 σ(yellow) and 2 σ(green) errors

Spectrum

- Used location and extension measurements results of the 2D symmetric Gaussian spatial source model
- Joint forward-folding fit performed using the Fermi-LAT data
- Power Law with Exponential Cutoff and Log Parabola were preferred over the Power Law model
 - ~2.3 sigma preference of PLEC over PL
- Results more in line with the eHWC measurements
 - Also agrees best in terms of the extraction region
- IACTs crucial as the energy turnover occurs in that energy range

Joint Fit with Fermi data - Power Law with Exponential Cutoff

Resulting fit parameters

$$\begin{split} E_0 &= 10 \; TeV \; ; \; f_0 = 1.51^{+0.25}_{-0.37} \cdot 10^{-13} \; cm^{-2} s^{-1} TeV^{-1} \\ \Gamma &= 1.70^{+0.08}_{-0.07} \; ; \; \; E_{cut} = 28.30^{+12.36}_{-7.41} \; TeV \end{split}$$

Summary

- MAGIC observations on HESS J1809 for about 60h
- Observed with Very Large Zenith Angles to increase the collection area in the multi-TeV range
- Current spectrum most in line with eHWC measurements
- Stay tuned for the paper and interpretation