The Zettavolt Askaryan Polarimeter (ZAP) mission concept: radio detection of ultra-high energy cosmic rays in low lunar orbit.

Andres Romero-Wolf

Jet Propulsion Laboratory, California Institute of Technology

Zettavolt Askaryan Polarimeter

- Detection of UHECR radio pulses produced by interactions in the lunar regolith (PI: A. Romero-Wolf, JPL).
- Smallsat with VHF (30-300 MHz) polarimetric antenna array.
- Leverages successful developments of NASA's ANITA suborbital UHE particle observatory.

Low frequencies enable large exposures

- Askaryan radiation at low frequencies has a broad beam pattern.
- Extremely high energy events are visible from a broad range of view angles at low frequencies (<100 MHz).

ZAP - Event Reconstruction

Pointing resolution $\sim 10^{\circ}$ is achievable

It is possible to drive it down further with more channels.

Contribution	Allocation	Depends on	Controlling parameters
RF Pointing	3°	 Antenna separation. Signal strength. 	Antenna separationSensitivity
Lunar topography	1 – 3°	 RF pointing Lunar region	 RF pointing (TBD)
In-plane CR tilt angle	5°	 Askaryan signal spectrum 	• RF Sensitivity
Out of plane CR tilt angle	8°	Polarization	 RF Sensitivity

Reconstruction will require 3 or 4 antennas in each polarization (9-12 dipoles total). Baseline separation > 6 m needed.

ZAP - prospects

Single smallsat in low lunar orbit operating for 2 years can achive >2,000 events with full sky coverage.

ZAP Science – full sky anisotropy studies

- Independent identification the sources of the highest energy cosmic rays and test the mechanism by which the spectrum cuts off.
- Full sky coverage with $\gtrsim 1000$ events with $E \gtrsim 10^{19.6} \mbox{ eV}$

ZAP Science – acceleration mechanisms

- Interactions of UHE cosmic rays with photon background (e.g. radio, microwave, IR, optical) result in energy loss during propagation.
- Auger and TA show a clear suppression (20σ significance).
- Increasing mass composition with increasing energy can mean one of two things:
 - The acceleration potential of nearby sources is limited (running out of steam).
 - Heavier elements are suppressed due to photon fields at the source while lighter elements are not.
 - $E_{max} \propto Z$
 - $\frac{dE}{dx} \propto A$
- Prediction is that the subdominant proton spectrum is recovered for E>10^{20.2} eV.

ZAP Science – composition at the highest energies

- ZAP is not sensitive to Xmax.
- However, it can test for clustering of hot spots as a function of energy.
- Composition is expected to get heavier with increasing energy.
- Clustering of hotspots as a function of energy could identify clusters could reveal sources of light particles at ultra-high energies expected from energy cutoffs due to photon field.
- This finding would be important for prospects of neutrino astronomy at ultra-high energies.

Scattering due to Galactic magnetic field deflections $\theta \sim 1^{\circ} Z \left(\frac{E}{100 \text{ FeV}}\right)^{-1}$

ZAP Science: Superheavy Dark Matter via the LPM Effect

- LPM effect is a suppression of the cross-section of electromagnetic particles at UHE.
- It results in multiple shower trains that \bullet results in structure in the Askaryan radio pulse.

ZAP has a planetary science capability

Search for extensive ice deposits in the permanently shadowed regions of Solar System airless bodies.

Full Authors List: ZAP Collaboration

Andrés Romero-Wolf^{*a*}, Jaime Alvarez-Muñiz^{*b*}, Luis A. Anchordoqui^{*c*}, Douglas Bergman^{*d*}, Washington Carvalho Jr.^{*e*}, Austin L. Cummings^{*f*}, Peter Gorham^{*g*}, Casey J. Handmer^{*a*}, Nate Harvey^{*a*}, John Krizmanic^{*h*}, Kurtis Nishimura^{*g*}, Remy Prechelt^{*g*}, Mary Hall Reno^{*i*}, Harm Schoorlemmer^{*j*}, Gary Varner^{*g*}, Tonia Venters^{*k*}, Stephanie Wissel^{*l*}, Enrique Zas^{*b*}

^{*a*} Jet Propulsion Laboratory, California Institute of Technology, ^{*b*} IGFAE & Universidade Santiago de Compostela, ^{*c*} Lehman College, City University of New York, ^{*d*} University of Utah, ^{*e*} Universidade do São Paulo ^{*f*} Gran Sasso Science Institute, ^{*g*} University of Hawai'i at Mānoa, ^{*h*} University of Maryland, ^{*i*} University of Iowa, ^{*j*} Max Planck Institute, ^{*k*} NASA Goddard Space Flight Center, ^{*l*} Pennsylvania State University,

Conclusions

Exciting prospects for cosmic rays astrophysics

- The next decade of ground arrays will bring exciting new results in ultra-high energy cosmic rays
 - Anisotropy and source identification.
 - Improvements in composition.
 - Understanding the proton fraction.
- ZAP could provide unprecedented sensitivity at energies $\gtrsim 10^{20}$ eV.
 - Anisotropy at higher energies.
 - Constraining the acceleration source mechanism and prospects for neutrino astronomy at ultra-high energies.
 - A probe of superheavy dark matter.

