vSpaceSim: A Comprehensive Simulation for the Modeling of Optical and Radio Signals from Extensive Air Showers Induced by Cosmic Neutrinos for Space-based Experiments

1 Center for Space Sciences and Technology, University of Maryland, Baltimore County, Baltimore County, Baltimore & Technology ; 3 NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771 USA; 4 Waseda Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan; 5 Department of Physics and Astronomy, Lehman College, City University of New York, New York, New York, 10468 USA; 6 Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112 USA; 7 Department of Physics, Gran Sasso Science Institute, L'Aquila, Italy: 8 Department of Astronomy, University of Maryland, College Park, College Park, Maryland 20742 USA; 10 Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia; 11 Department of Physics and Astronomy, University of Iowa, Iowa 52242 USA; 12 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA; 13 Department of Physics, Colorado School of Mines, Golden, Colorado 80401 USA; 14 Department of Physics, Pennsylvania State University, State College, Pennsylvania 16801 USA

vSpaceSim is a comprehensive end-to-end simulation package to modeling the upward-moving EASs sourced from tau neutrino interactions within the Earth that employs a new modeling package, nuPyProp. vSpaceSim is designed to model all aspects of the neutrino-induced EAS signals, including the the Earth, propagating the leptons into the atmosphere, modeling the τ-lepton decays, forming composite EAS, generating the air optical Cherenkov and radio signals, modeling detector responses. vSpaceSim uses a vectorized Python implementation of a sampled library approach to efficiently simulate neutrino-induced and background signals at a specific orbit or balloon altitude. A detector response module, based on user-inputted response module, based on user-inputted response module. the sky coverage and the pointing requirements needed for target-of-opportunity (ToO) follow-up observations of transients, as well as the assessment of the effects of dark-sky airglow and UHECR backgrounds. vSpaceSim will provide an efficient and practical cosmic neutrino EAS signal generation modeling package to aid in the development of future sub-orbital and space-based experiments.

Software Architecture & User Input

Vectorized Python wrapper than schedules modules written in higher-level languages, C, C++, Fortran.

- Inherent multi-core processing via Dask
- XML input format and HDF5 library and output format - Libraries pre-generated, with code to re-generate libraries
- τ -lepton Earth-exit Probability (nuPyProp, nuTauSim)
- τ -lepton decay tables (Pythia)
- EAS longitudinal profiles (CONEX)
- Optical Cherenkov properties via EAS age
- Atmosphere Attenuation: Baseline for Rayleigh
- scattering, aerosol & ozone absorption
- Cloud and Aerosol libraries from MERRA-2 database
- Detailed Optical Detector modeling
- Radio: based on ZHAireS simulated libraries and standard antennae designs

- DetectorCharacteristics Type="Satellite" Method="Optical"> OuantumEfficiency>0.2</OuantumEfficienc PhotoElectronThreshold Preset="True"> NPE>10</NPE Unit="Degrees">0.0</InitialDetectorRightAscensi Unit="Degrees">0.0</InitialDetectorDeclination </DetectorCharacteristics> MaximumCherenkovAng Unit="Degrees">3.0</MaximumCherenkovAngle AngleFromLimb Unit="Degrees">7.0</AngleFromLim TauShowerType Preset="True"> <FracETauInShower>0.5</FracETauInShower> </TauShowerTvpe> <NuTauEnergySpecType SpectrumType="Mono"> NuTauEnergy>8.0</NuTauEnergy> </NuTauEnergySpecType> AzimuthalAngle Unit="Degrees">360.0</AzimuthalAngle NumTrais>1000000</NumTrais

Results from the ZHAireS simulation showing the radio pulse spectra at 525 km altitude as a function of observer view angle of the shower for $\beta_{tr} = 10^{\circ}$ vs τ -lepton decay altitude for 100 PeV EAS, ignoring ionosphere dispersion.

(photons/m²) at 525 km altitude for a 100 PeV upward EAS for β_{tr} = 15°. Right: the simulated Cherenkov spectrum at 525 km for the EAS. Ref: JCAP V2021, 106, id007.

Acknowledgements

the Colorado School of Mines, 80NSSC19K0484 at the University of Iowa, and 80NSSC19K0485 at the University of Utah, 80NSSC18K0464 at Lehman College, and under proposal 17-APRA17-0066 at NASA/GSFC and JPL.

References to related ICRC2021 Papers:

- Sameer Patel: NU ID#482
- Mary Hall Reno: NU ID#248
- Toni Venters: MM ID#1337

Earth-interacting $v_{\tau} \rightarrow \tau$ EAS Simulation FlowChart

John Krizmanic^{1,2}, Yosui Akaike⁴, Luis Anchordoqui⁵, Douglas Bergman⁶, Isaac Buckland⁶, Austin Cummings⁷, Johannes Eser⁸, Claire Guepin⁹, Simon Mackovjak¹⁰, Angela Olinto⁸, Thomas Paul⁵, Sameer Patel¹¹, Alex Reustle³, Andrew Romero-Wolf¹², Mary Hall Reno¹¹, Fred Sarazin¹³, Tonia Venters³, Lawrence Wiencke¹³, Stephanie Wissel¹⁴

Geometry and Celestial Sky Mapping

Neutrino trajectory vector $(\vec{\nu})$ in relation to equatorial celestial coordinate: \vec{I} is the vernal equinox direction and \widehat{n} is the north pole direction).

The geometry for observing a τ -lepton

induced EAS from a detector at altitude h

See NU ID#482.

τ-lepton P_{exit} versus tau neutrino energy and Earthemergence angles using CT18-NLO v cross-sections and ALLM photonuclear τ -lepton energy loss model: $\nu_{\tau} \rightarrow \tau$ (solid); $\nu_{\mu} \rightarrow \mu$ (dashed). See NU ID#482.

Example composite EAS profiles from various lepton decay channels. Implementation in progress.

signal properties for a 100 PeV upward-moving EAS. Ref: PhysRevD.103.043017

optical Cherenkov detector. Implementation in progress.

Sky map of the sensitivity to transient neutrino fluxes for the EUSO-SPB2 ULDB instrument assuming observations in astronomical night near new moon. implementation in progress, see MM ID#1337.

altitudes. The various components are shown by the solid lines while the black boxes show the profile from the Greissen parameterization

flux for a POEMMA-like detector viewing the surface of the Earth 7° below the limb and 360° in azimuth. The points are from vSpaceSim while the red curve is from that used in PhysRevD.100.063010