A Numerical Approach to Angular **Distributions in Hadronic Cascades**

International Cosmic Ray Conference – 2021

CARISBERG FOUNDATION

<u>Tetiana Kozynets¹</u>, Anatoli Fedynitch², and D. Jason Koskinen¹ ¹Niels Bohr Institute, University of Copenhagen ²Institute of Cosmic Ray Research, University of Tokyo

UNIVERSITY OF COPENHAGEN

Hadronic cascades

*Schematic from S. Mollerach and E. Roulet, Prog. Part. Nucl. Phys. 98 (2018).

- > Central to the evolution of air showers;
- > Rich in secondary particles, which are widely spread at low energies;
- > For angular distributions of low-energy secondaries, need to develop the cascades in 3D

Hadronic cascades

- > Central to the evolution of air showers;
- > Rich in secondary particles, which are widely spread at low energies;
- > For angular distributions of low-energy secondaries, need to develop the cascades in 3D:

develops a numerical approach to angular distributions of *O***(GeV)** cascade secondaries:

develops a **numerical approach** to angular distributions of *O*(GeV) cascade secondaries:

> Use MCEq*, a state-of-the-art numerical software for 1D cascade development;

> Extend MCEq from **1D** (*X*) to 2D ($X+\theta$);

* – Matrix Cascade Equations;https://github.com/afedynitch/MCEq

develops a **numerical approach** to angular distributions of *O*(GeV) cascade secondaries:

> Use MCEq*, a state-of-the-art numerical software for 1D cascade development;

> Extend MCEq from 1D (X) to **2D** ($X+\theta$);

* – Matrix Cascade Equations;https://github.com/afedynitch/MCEq

develops a **numerical approach** to angular distributions of *O*(GeV) cascade secondaries:

> Use MCEq*, a state-of-the-art numerical software for 1D cascade development;

> Extend MCEq from 1D (X) to **2D** ($X+\theta$);

> Applications – fast and flexible modelling of **LE atmospheric** *ν* **fluxes**.

* – Matrix Cascade Equations;https://github.com/afedynitch/MCEq

Selected results

> Develop a **100 GeV proton cascade in the Earth's atmosphere** using 2D MCEq; > Use CORSIKA as the benchmark Monte Carlo;

> Compare the angular distributions of the secondary muons:

Selected results

> Find a very good agreement at a range of altitudes and muon energies:

This suggests that our tool can be a fast and accurate alternative to the Monte Carlo cascade development approaches.

Talk to us at the presenter's forum, email tetiana.kozynets@nbi.ku.dk, or have a look at the proceedings.

Want to know more?

*

Backup

Our approach

Attempted convolution methods

Benchmarking, part II

Angle-integrated spectra

