TeV Analysis of PWN Component 3HWC J2031+415

E11

lan Herzog Email: igherzog@mtu.edu Michigan Technological University ICRC 2021 July 16, 2021

2

Observations of the unidentified gamma-ray source TeV J2032+4130 by VERITAS E. Aliu et al 2014 ApJ 783 16

Abevsekara et al. HAWC observations of the

the Cygnus Cocoon. Nat Astron (2021).

Previous work on 3HWC J2031+415

- ** **HEGRA**
 - Discovered TeV J2032+4130
- VERITAS **
 - Asymmetric gaussian shape \succ
 - First implied probable PWN \succ
 - Hypothesized PSR J2032+4127 as PWN \succ
- HAWC **
 - Cocoon star cluster emission analysis \succ
 - Modelled 3 sources \succ
 - J2031, J2030, J2020
 - (307.82, 41.51), (307.65, 40.93), (30.27, 40.50)

rays in the Cygnus Cocoon. Nat Astron

source TeV J2032+4130 by VERITAS E. Aliu et al 2014 ApJ 783 16

HEGRA

**

Asymmetric gaussian shape \succ

Previous work on 3HWC J2031+415

- First implied probable PWN \succ
- Hypothesized PSR J2032+4127 as PWN \succ

Discovered TeV J2032+4130

- HAWC **
 - Cocoon star cluster emission analysis \succ
 - Modelled 3 sources \succ
 - J2031, J2030, J2020
 - (307.82, 41.51), (307.65, 40.93), (30.27, 40.50)

(2021).

A closer look at 3HWC J2031+415

- ✤ 2 components to emission
 - > HAWC J2030+409 → Cocoon
 - → HAWC J2031+415 → PWN
- Secondary source
 - >> 3HWC J2020+403 → Gamma Cygni
- PWN focus
 - > 1343 days of data
 - Reconstructed energies > 1 TeV

Modelling the region

- Model 3 sources
 - ➢ 3HWC J2020+403
 - ► HAWC J2030+409
 - ▶ HAWC J2031+415
 - All extended symmetric 2D gaussians

Powerlaw

Powerlaw

Powerlaw with cutoff

$$rac{dN}{dE} = N_o (rac{E}{E_p})^\gamma st e^{rac{-E}{E_c}}$$

- Region of interest (ROI)
 - Green contour
 - ➤ mask on 3HWC J2019+367

PWN Isolation process

Parameters	Cocoon (J2030)	Gamma Cygni (J2020)
Index γ	Free	Free
Flux normalization N _o	Free	Free
Gaussian width σ	Free	Fixed

For Gamma Cygni fixed width: arXiv:1907.08572 [astro-ph.HE]

PWN Modelling

All uncertainties presented are statistical only

Fit parameters	J2031+415 (PWN)
σ (deg)	$0.27\substack{+0.021\-0.02}$
<i>N_o</i> (1/(cm²*TeV*s))	$1.32^{+0.17}_{-0.14} * 10^{-13}$
Ŷ	$-1.96\substack{+0.17\\-0.14}$
E _c (TeV)	39^{+20}_{-12}
E_{ρ} (TeV)	4.9

$$rac{dN}{dE} = N_o (rac{E}{E_p})^\gamma st e^{rac{-E}{E_c}}$$

Spectral Comparison

- HAWC's sensitivity at high energies reveals cutoff in spectrum
 - Power law with exponential cut off in good agreement
- Discrepancy with VERITAS
 - Used multisource fit
 - Scaling factor: 1.49

Energy Morphology study

General overview

- Determine source shape with changing energy
- Binning data
 - ➢ Binning scheme
 - Energy
 - % array hit
 - Don't have enough data per bin
 - ➢ Not all bins are used
- Need method
 - Straight fitting may not be practical
 - ➢ Enter slicing method

A. U. Abeysekara et al, "Measurement of the Crab Nebula Spectrum Past 100 TeV with HAWC" 2019 ApJ 881<u>134</u>

Bin	Low energy (TeV)	High energy (TeV)	
a	0.316	0.562	
b	0.562	1.00	
с	1.00	1.78	
d	1.78	3.16	
e	3.16	5.62	
f	5.62	10.0	
g	10.0	17.8	
h	17.8	31.6	
i	31.6	56.2	
j	56.2	100	
k	100	177	
1	177	316	

Table 2. \mathcal{B} bins

Bin number	Low fraction hit	High fraction hit
1	0.067	0.105
2	0.105	0.162
3	0.162	0.247
4	0.247	0.356
5	0.356	0.485
6	0.485	0.618
7	0.618	0.740
8	0.740	0.840
9	0.840	1.00

Table 1. Energy bins

	Bin	Low energy (TeV)	High energy (TeV)
	a	0.316	0.562
	b	0.562	1.00
	с	1.00	1.78
	d	1.78	3.16
	е	3.16	5.62
	f	5.62	10.0
	g	10.0	17.8
	h	17.8	31.6
	i	31.6	56.2
	j	56.2	100
la	k	100	177
	1	177	316

Table 1. Energy bins

Table 2. \mathcal{B} bins

Bin number	Low fraction hit	High fraction hit
1	0.067	0.105
2	0.105	0.162
3	0.162	0.247
4	0.247	0.356
5	0.356	0.485
6	0.485	0.618
7	0.618	0.740
8	0.740	0.840
9	0.840	1.00

What energy bands?

- ✤ Band 1 (1 3.16 TeV)
 - ➢ Bins c, d
- ✤ Band 2 (3.16 10 TeV)
 ➢ Bins e, f
- ✤ Band 3 (10 56.2 TeV)
 ➢ Bins g, h, i
- ✤ Band 4 (56.2 316 TeV)
 - ➢ Bins j, k, l

A. U. Abeysekara et al,

"Measurement of the Crab Ne Spectrum Past 100 TeV with <u>HAWC</u>" 2019 ApJ 881 134

Slicing Method

Takes rectangular region

- ➤ Angle is crucial
- Defined as line connecting J2031 and PSR J2032+4127
- Slice into "bins"
 - ➣ 50 bins used
- Sum excess counts
- Plot and fit Gaussian
 - PSF' is 1 sigma width

Joshi, V. "Reconstruction and Analysis of Highest Energy gamma-rays and its Application to Pulsar Wind Nebulae", PhD Thesis, Ruperto-Carola University, Germany

Slicing Method continued

- Compare simulated sources
 - ➢ HAWC J2031+415 PL
 - ≻ Crab PL
 - Not limited by events
- How do the PSF' compare?
 - > Use simulated Crab for bin selection
 - > Well documented behavior

Joshi, V. "Reconstruction and Analysis of Highest Energy gamma-rays and its Application to Pulsar Wind Nebulae", PhD Thesis, Ruperto-Carola University, Germany

HAWC J2031+415 vs Crab simulation

HAWC J2031+415 vs Crab simulation continued

Bin cutting

- Pick best S/N value
- Keep any following bins
 - If lower, PSF' roughly within 25% of best S/N PSF'
- Maximize "good" data
 - ➢ Band 1 = 3c 3d, 4c, 4d
 - ➢ Band 2 = 5e, 5f, 6e, 6f, 7f
 - Band 3 = 7g, 7h, 7i, 8g, 8h, 8i, 9g, 9h, 9i
 - ➢ Band 4 = 8j, 9j, 9k, 9l
- Dataset
 - Take subtracted data as excess

Band 1 (1 - 3.16 TeV)

Band 2 (3.16 - 10 TeV)

Band 3 (10 - 56.2 TeV)

Band 4 (56.2 - 316 TeV)

Final morphology result

Future Work

HAWC array and outriggers

- Investigate emission cause
 - ➢ Hadronic or leptonic
- Outriggers
 - Greatly increase sensitivity to > 10
 TeV events
 - ➢ Better constrain analysis parameters.

HAWC outriggers and array, courtesy of Armelle Jardin-Blicq

Thank you! Questions?

Backup Slides

HAWC Array

Number of tanks	300	
Coverage	2/3 of the sky daily	
Duty cycle	> 95%	
Area (central array)	22,000 m ²	
Area (outriggers)	100,000 m ²	
Sensitivity	300 GeV \rightarrow >100 TeV	

HAWC vs VERITAS fit parameters

HAWC fitting

All uncertainties presented are statistical only

VERITAS fitting

Fit parameters	J2031+415 (PWN)
σ (deg)	$0.27\substack{+0.021\-0.02}$
<i>N_o</i> (1/(cm²*TeV*s))	$1.32^{+0.17}_{-0.14} * 10^{-13}$
Ŷ	$-1.96\substack{+0.17\\-0.14}$
E _c (TeV)	39^{+20}_{-12}
E_{p} (TeV)	4.9

Fit parameters	J2031+415
Semi-major (deg)	0.16 ± 0.02
Semi-minor (deg)	0.07 ± 0.01
Tilt angle (deg)	23 ± 6
N _o (1/(cm²*TeV*s))	$(9.5\pm1.6)*10^{-13}$
Ŷ	2.10 ± 0.14

Observations of the unidentified gamma-ray source TeV J2032+4130 by VERITAS E. Aliu *et al* 2014 *ApJ* 783 16

J2031, J2030 and J2020 fit parameters

All uncertainties presented are statistical only

Fit parameters	J2031+415 (PWN)	J2030+409 (Cocoon)	J2020+403 (Gamma Cygni)
σ (deg)	$0.27\substack{+0.021\\-0.02}$	2.18 ± 0.17	0.63 (fixed)
<i>N_o</i> (1/(cm²*TeV*s))	$1.32^{+0.17}_{-0.14} * 10^{-13}$	$(8.9\pm0.9)*10^{-13}$	$57^{+1.1}_{-0.9} * 10^{-13}$
Ŷ	$-1.96\substack{+0.17\\-0.14}$	-2.64 ± 0.05	-2.88 ± 0.12
E _c (TeV)	39^{+20}_{-12}		
Ε _ρ (TeV)	4.9 (fixed)	4.2 (fixed)	4.2 (fixed)
Fit parameters	372.1	151.9	43.0

Crab data vs simulation

Crab data vs simulation continued

