GeV-radio correlation in Markarian 421

University of Geneva, Department of Astronomy

Vitalii Sliusar, Roland Walter, Matteo Balbo

ICRC 2021

Mrk 421: overview

- Mrk 421 is HBL blazar:
 - Bright and nearby blazar, z=0.031 (~122-133 Mpc)
 - Imagined with VLBA up to <0.01-0.1 pc (<100-1000 rg)
 - Has a well defined jet structure extending for 4.5 mas (2.67 pc)
- Low energy hump:
 - synchrotron emission during relativistic electrons cooling
- High energy hump:
 - leptonic models:
 - one-zone SSC model (Celotti et al. 1998, Abdo et al. 2011)
 - multi-zone SSC model (Aleksić et al. 2015, Zhu et al. 2016)
 - hadronic models (Zech et al. 2017)
 - lepto-hadronic models:
 - synchrotron-proton model (Mastichiadis, Petropoulou 2013)
 - neutrino emission (Petropoulou 2015, Dermer et al. 2010)

Data and results

- Mrk 421 observations from November 2010 to April 2018:
 - Mrk 421 was found in various states: typical, low, high •
 - Regular unbiased radio observations
- **Results**: lacksquare
 - F_{var} values are the lowest in the radio and GeVs, 0.18 and 0.2 respectively
 - Radio and GeV are widely correlated with GeV leading by 40-50 days
 - Observed variability and correlations are compatible with one-zone SSC scenario
 - The radio emission can be reproduced accurately convolving the GeV light curve with a delayed asymmetric response (a fast rise and a slower decay after a delay of ~43 days) (Türler et al. 1999, Esposito et. 2015)
 - Fast radio flares (MJD 55528 and 56897) cannot be reproduced (evidence for an additional mechanism/zone)

			Parameter	V
S(t) =	(0	$t < \Delta t$	A	1.4
	$A \exp\left(-\left(\frac{t-\Delta t}{t_{decav}}\right)^{\phi}\right)$	$t \ge \Delta t$	t _{decay}	7.6
			ϕ	(
			Δt	44.

