Acceleration of cosmic ray secondaries inside old supernova remnants

Philipp Mertsch

with Subir Sarkar and Andrea Vittino

ICRC2021 5 July 2021

Secondaries from the source?

Common belief: secondaries from propagation dominate since the grammage in the ISM is larger than in the source

$$egin{aligned} &\langle au_{
m src}
angle \lesssim au_{
m SNR} pprox 10^{4...5} \, {
m yr} \ &n_{
m src} \lesssim 10 \, {
m cm}^{-3} \ &\Rightarrow X_{
m src} pprox 0.2 \, {
m g \, cm}^{-2} \end{aligned}$$

$$\langle au_{\rm ISM}
angle \sim au_{
m esc} pprox 10^7 \, {
m yr}$$
 $n_{
m ISM} pprox 0.1 \, {
m cm}^{-3}$
 $\Rightarrow X_{
m ISM} pprox {
m few} \, {
m g} \, {
m cm}^{-2}$

However, secondaries from source can have a harder spectrum!

The transport equation

 $\frac{\partial \psi_j}{\partial t} = \nabla \cdot \left(\kappa \cdot \nabla \psi_j - \mathbf{u} \, \psi_j \right)$ spatial diffusion and advection $+\frac{\partial}{\partial p}\left(p^2 D_{pp}\frac{\partial}{\partial p}\frac{1}{p^2}\psi_j\right)$ momentum diffusion $+\frac{\partial}{\partial p}\left(-\frac{\mathrm{d}p}{\mathrm{d}t}\psi_{j}+\frac{p}{3}\left(\nabla\cdot\mathbf{u}\right)\psi_{j}\right)$ momentum change incl. adiabatic $-vn_{gas}\sigma_j\psi_j-\frac{\psi_j}{\tau_j}$ spallation and decay $+ vn_{gas} \sum_{k>i} \sigma_{k \to j} \psi_k + \sum_{k>i} \frac{\psi_k}{\tau_{k \to j}}$ spallation and decay $+S_i$ primary sources

The transport equation

for shock acceleration

 $\frac{\partial \psi_j}{\partial t} = \nabla \cdot \left(\kappa \cdot \nabla \psi_j - \mathbf{u} \, \psi_j \right)$ spatial diffusion and advection $+\frac{\partial}{\partial p}\left(p^2 D_{pp}\frac{\partial}{\partial p}\frac{1}{p^2}\psi_j\right)$ momentum diffusion $+\frac{\partial}{\partial p}\left(-\frac{\mathrm{d}p}{\mathrm{d}t}\psi_{j}+\frac{p}{3}\left(\nabla\cdot\mathbf{u}\right)\psi_{j}\right)$ momentum change incl. adiabatic $-vn_{gas}\sigma_j\psi_j-\frac{\psi_j}{\tau_i}$ spallation and decay $+ v n_{\text{gas}} \sum_{k > i} \sigma_{k \to j} \psi_k + \sum_{\iota \sim i} \frac{\psi_k}{\tau_{k \to j}}$ $+S_i$ primary sources

Macroscopic approach

Seminal papers in 1977/78 by Krymsky; Axford, Leer, Skaldron; Blandford, Ostriker; also Bell

• Consider steady-state transport equation for phase-space density *f_i*:

$$u\frac{\partial f_i}{\partial x} - \frac{\partial}{\partial x}\kappa\frac{\partial f_i}{\partial x} - \frac{p}{3}\frac{\mathrm{d}u}{\mathrm{d}x}\frac{\partial f_i}{\partial p} = 0$$

• For $x \neq 0$,

$$f_i(x, p) = \begin{cases} g_i(p) \exp\left[\frac{x}{\kappa(p)/u}\right] + Y_i \delta(p - p_{inj}) & \text{for } x < 0\\ f_{i,0}(p) & \text{for } x > 0 \end{cases}$$

Macroscopic approach

Seminal papers in 1977/78 by Krymsky; Axford, Leer, Skaldron; Blandford, Ostriker; also Bell

· Can derive matching conditions and find for the spectrum at shock,

$$f_{i,0}(\boldsymbol{p}) = \gamma \boldsymbol{p}^{-\gamma} \int_0^{\boldsymbol{p}} \mathrm{d}\boldsymbol{p}' \, \boldsymbol{p}'^{\gamma-1} Y_i \delta(\boldsymbol{p}' - \boldsymbol{p}_{\mathsf{inj}}) + \mathsf{const.} \times \boldsymbol{p}^{-\gamma}$$

with spectral index $\gamma \equiv \frac{3r}{r-1}$

• With $r \simeq 4$: $f_{i,0}(p) \propto p^{-4} \Rightarrow \psi_i(p) = 4\pi p^2 f_{i,0}(p) \propto p^{-2}$

Strong (r = 4) shock accelerates CRs to p^{-2} spectrum!

Primaries only

р

ŝ

DSA with secondaries

Blasi (2009); Blasi & Serpico (2009); Mertsch & Sarkar (2009); Ahlers *et al.* (2010); Tomassetti & Donato (2012); Cholis & Hooper (2012); Mertsch & Sarkar (2014); Cholis *et al.* (2017); Mertsch, Vittino, Sarkar (2020); Kawanak & Lee (2021)

• Transport equation

$$u\frac{\partial f_{i}}{\partial x} - \frac{\partial}{\partial x}\kappa\frac{\partial f_{i}}{\partial x} - \frac{p}{3}\frac{\mathrm{d}u}{\mathrm{d}x}\frac{\partial f_{i}}{\partial p} + \Gamma_{i}f_{i} = q_{i} \quad \text{with} \quad \Gamma_{i} = vn\sum_{j < i}\sigma_{i \to j}, \ q_{i} = vn\sum_{j > i}\sigma_{j \to i}f_{j}$$

$$spallation \ loss \quad spallation \ production$$

Downstream (+) solution is not const. anymore:

$$f_i^+(x,p) \simeq f_i^0(p) + r \left(q_i^0(p) - \Gamma_i^+ f_i^0(p) \right) \frac{x}{u_+}$$

2 Spectrum at shock is not $\propto p^{-\gamma}$ anymore:

$$f_i^0(\boldsymbol{p}) = \gamma \boldsymbol{p}^{-\gamma} \int_0^{\boldsymbol{p}} \mathrm{d}\boldsymbol{p}' \, \boldsymbol{p}'^{\gamma-1} \left(\underbrace{\underline{Y_i \delta(\boldsymbol{p}' - \boldsymbol{p}_{\mathrm{inj}})}_{\rightarrow \boldsymbol{p}^{-\gamma}} + (1 + r^2) \mathrm{e}^{-\boldsymbol{p}'/\boldsymbol{p}_{\mathsf{f}}} \underbrace{\frac{\kappa(\boldsymbol{p}')}{u_-^2}}_{\propto \boldsymbol{p}'} q_i^0(\boldsymbol{p}') \right)_{\rightarrow \boldsymbol{p}^{-\gamma+1}}$$

DSA with secondaries

Mertsch, Vittino, Sarkar (2020)

р

ś

The transport equation

for galactic transport

$$\begin{split} \frac{\partial \psi_j}{\partial t} = & \nabla \cdot \left(\kappa \cdot \nabla \psi_j - \mathbf{u} \psi_j \right) & \text{spatial diffusion and advection} \\ & + \frac{\partial}{\partial p} \left(p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_j \right) & \text{momentum diffusion} \\ & + \frac{\partial}{\partial p} \left(-\frac{\mathrm{d}p}{\mathrm{d}t} \psi_j + \frac{p}{3} \left(\nabla \cdot V \right) \psi_j \right) & \text{momentum change incl. adiabatic} \\ & - v n_{\text{gas}} \sigma_j \psi_j - \frac{\psi_j}{\tau_j} & \text{spallation and decay} \\ & + v n_{\text{gas}} \sum_{k>j} \sigma_{k \to j} \psi_k + \sum_{k>j} \frac{\psi_k}{\tau_{k \to j}} & \text{spallation and decay} \\ & + S_j & \text{primary sources} \end{split}$$

Challenges

Mertsch, Vittino, Sarkar (2020)

Large number of free parameters

- Unknown parameters:
 - source spectrum: γ_1^{p} , γ_2^{p} , \mathcal{R}_{br}^{p} , s^{p} , γ_2^{He} , γ_2^{C} , γ_2^{nuc} gal. transport: κ_0 , \mathcal{R}_{12} , \mathcal{R}_{23} , s_{12} , s_{23} , δ_1 , δ_2 , δ_3 , v_A

 - **solar modulation:** ϕ_{p} , ϕ_{e^+} , $\phi_{\bar{p}}$, ϕ_{nuc}
 - **accn.** of secs.: τ_{SNR} , K_{B} , \mathcal{R}_{max} , α
- Cannot adopt values from other studies
- \rightarrow Need to efficiently scan parameter space
 - Used affine-invariant MC sampler emcee

Cross-section uncertainty

- For e⁺: Dermer, Kamae *et al.*, Huang *et al.*
- For p
 Winkler, Feng et al., Kachelriess et al., Tan & Ng
- Some needed to be implemented in GALPROP

Results: proton

Results: helium

Results: positrons, antiprotons

Future improvements

Reminder: steady-state spectrum at shock:

$$f_i^0(p) = \gamma p^{-\gamma} \int_0^p \mathrm{d}p' \, p'^{\gamma-1} \left(\underbrace{\underbrace{Y_i \delta(p'-p_{\mathrm{inj}})}_{\rightarrow p^{-\gamma}} + (1+r^2) \mathrm{e}^{-p'/p_{\Gamma}} \frac{\kappa(p')}{u_-^2}}_{\propto p'} q_i^0(p') \right)_{\rightarrow p^{-\gamma+1}} \frac{\varphi_i^0(p')}{\varphi_i^{\gamma-1}} + \frac{\varphi_i^0(p')}{\varphi_i^{\gamma-1}} + \frac{\varphi_i^0(p')}{\varphi_i^{\gamma-1}} \frac{\varphi_i^0(p')}{\varphi_i^{\gamma-1}} + \frac{\varphi_i^0(p')}{\varphi_i^{\gamma-1}} +$$

Additional effects

- Time-dependence, e.g. for shock speed
- Self-consistent $\kappa(p)$
- Escape

 \rightarrow A multi-scale problem!

hydro, *t*_{dyn} kinetic, *t*_{gyro} hydro-kinetic, ?

Summary

- Secondary CRs get shock accelerated inside supernova remnants
- Can explain the e⁺ excess, the hard \bar{p} spectrum, ...
- No need for new class of sources!

Mertsch, Vittino, Sarkar (2020), arXiv:2012.12853

Results: carbon, oxygen

Results: boron, nitrogen

Results: boron-to-carbon ratio

