

Gravitational Wave Follow-Up Using Low Energy Neutrinos in IceCube DeepCore

A. Balagopal V.¹, R. Hussain¹, A. Pizzuto¹ for the IceCube Collaboration, PoS(ICRC2021)939

¹University of Wisconsin-Madison

104 IceCube Preliminar IceCube I The IceCube DeepCore Effective Area 3 IceTop 81 Stations 324 optical sensors • Nearly uniform • The IceCube Neutrino IceCube Array effective area which 86 strings Observatory at the South including 8 DeepCore string varies by less than an 5160 optical sensors Pole observes astrophysical 8 order of magnitude neutrinos with energies across the whole sky^[2] 10greater than 100s of Gev 1450 m DeepCore 10^{-1} 8 strings-spacing optimized for lower energies 480 optical sensors Neutrino Energy (GeV) • Horizontal string spacing: 125 m; vertical spacing of IceCube Preliminar Eiffel Tower -₀1² optical sensors (DOM): 324 m • Complements high-2450 r Area 10-17 m energy^[3] and extremely 2820 r Effective ⁻⁰¹ low-energy^[4] datasets • IceCube DeepCore: the infill array of IceCube with • Has already been used to DOMs of higher quantum Ю -30 ≤δ< -5 • DeepCore string spacing: 72m; DOM spacing: **□** -5 ≤ δ < 0 search for astrophysical efficiency and deployed in □ 0 ≤ δ < 30</p> 7m **□** 30 ≤ δ < 90 transients^[4] $10^{-10} \underset{10^{-1}}{\overset{\downarrow}{\downarrow}}$ the clearest ice 10 • This lowers the threshold down to ~ 10 GeV Neutrino Energy (GeV) Angular uncertainty of $v_{\mu} + \overline{v}_{\mu}$ with random forest Gravitational Wave Follow-up with the GRECO Dataset 4 2 The GRECO Dataset (GeV Reconstructed Events with • Use the dataset to search for counterparts to gravitational waves in *Containment for Oscillations)* the 10s -100s of GeV energy range • Event selection originally developed for tau • Time window of \pm 500 s around the time of each GW event observed neutrino appearance by LIGO-Virgo Z studies^[1] • Use probabilities from the gravitational wave skymap as spatial prior • Neutrinos of all flavors $\frac{1.5}{\log_{10}(E_{\nu,\text{true}}/\text{GeV})}$ 2.5 • Unbinned maximum likelihood method used to look for transients 3.03.50.51.0(method similar to the high-energy analysis^[6]) • Includes data from both Southern and Northern $\mathcal{L} = \frac{(n_s + n_b)^N}{N!} e^{-(n_s + n_b)}$ hemispheres • Angular resolution worse than that of high-energy IC86-2018 • Look for spatially and temporally coincident neutrinos by likelihood events maximization $\mathcal{L}_k(n_s, \gamma)$. \dot{w}_k • Event selection has an Test Statistic (TS) = max. $\{2 \ln$ skymap (direction average rate of 4.5 mHz^[2] Runs over all pixels ϵ Run Start (MID)

