

# PROCEEDINGS OF SCIENCE

# A high temperature superconducting demonstrator coil for a novel toroidal magnetic spectrometer for an astroparticle physics experiment in space

Magnus Dam,<sup>*a*,\*</sup> William Jerome Burger,<sup>*b*</sup> Rita Carpentiero,<sup>*c*</sup> Enrico Chesta,<sup>*d*</sup> Roberto luppa,<sup>*e*</sup> Gijs de Rijk<sup>*d*</sup> and Lucio Rossi<sup>*a*,*f*</sup>

<sup>a</sup>INFN, National Institute for Nuclear Physics I-20133 Milano MI, Italy
<sup>b</sup>TIFPA, Trento Institute for Fundamental Physics and Applications, I-38122 Trento TN, Italy
<sup>c</sup>ASI, Italian Space Agency, I-00133 Rome RM, Italy
<sup>d</sup>CERN, European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland
<sup>d</sup>University of Trento, Department of Physics, I-38122 Trento TN, Italy

<sup>f</sup> University of Milan, Department of Physics, I-20133 Milano MI, Italy

*E-mail:* magnus.dam@cern.ch

Magnetic spectrometers detect the rigidity of charged particles by measuring the bending of their trajectories as they pass through a magnetic field. A novel magnetic spectrometer for an astroparticle physics experiment in space should have a maximum detectable rigidity of about 100 TV. This motivates the design of a toroidal spectrometer magnet with a bending strength of 3 T m. To facilitate operation temperatures of about 20 K, the toroid consists of twelve high temperature superconducting (HTS) coil packs, where each coil pack contains two coils. The toroid is about 2 m in outer diameter and 2 m in height. The toroidal magnet requires about 60 km of 12 mm wide REBCO tape with a current density of 1200 A/mm2, and has a peak magnetic field of about 12 T. Within the HTS Demonstrator Magnet for Space (HDMS) project, we have designed and are building a small-scale demonstrator coil pack for the toroidal magnet system. The demonstrator coil pack consists of two individually built racetrack-shaped soldered metal insulation coils enclosed with copper bands. Self-protection against quenches is obtainable with the use of soldered metal insulation coils. The surrounding copper bands function as current leads and layer jumps. The coils are supported by a lightweight mechanical structure made from aluminium alloy. A copper block electrically connects the two coil layers. We describe the design and manufacturing method of the demonstrator coil.

37<sup>th</sup> International Cosmic Ray Conference (ICRC 2021) July 12th – 23rd, 2021 Online – Berlin, Germany

<sup>\*</sup>Presenter

<sup>©</sup> Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

### 1. Introduction

Particle detection in space: AMS-02 and other proposals for future spectrometers: AMS-100, Aladino

# 2. A novel magnetic spectrometer in space

#### 2.1 The [name of spectrometer] spectrometer

Performance requirements, Engineering constraints (geometrical restrictions, zero magnetic moment), Basic geometry (toroid), Acceptance of detector system: Proposal for constellation

#### 2.2 Detector system for a toroidal magnetic spectrometer

Types of detectors Monte Carlo simulation.

#### 2.3 Toroidal spectrometer magnet

Quench self-protection coil cryogen free choice Magnet design current density, magnetic field, Mechanical structure

# 3. HTS demonstrator magnet for space

The HTS Demonstrator Magnet for Space (HDMS) project aims to design, build and test an HTS demonstrator coil for a toroidal spectrometer magnet.

#### 3.1 Conductor specification

- 3.2 Coil design
- 3.3 Mechanical structure
- 3.4 Project status
- 4. Conclusion

# References

[1] ....



Figure 1: An exploded view of the components of the dummy coil, AMaSED-0.