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Case study

Since 2015, the LIGO/Virgo Collaboration (LVC) is detecting and sending alerts for
gravitational waves from the merger of binary objects.

* Binary Neutron Star (BNS): may produce short
Gamma-Ray Bursts (GRB) with neutrino production*

* Binary Black Hole (BBH): neutrino production in the
accretion disks of the black holesT

¢ Neutron Star - Black Hole (NSBH)

Detecting coincident neutrinos from these objects would allow better understanding of the
mechanisms behind them.

*Foucart, F., et al (2016). Low mass binary neutron star mergers: Gravitational waves and neutrino emission. Physical Review D, 93(4).
10.1103/PhysRevD.93.044019

iCabalIero, O. L., et al (2016). Black hole spin influence on accretion disk neutrino detection. 10.1103/PhysRevD.93.123015


https://doi.org/10.1103/PhysRevD.93.044019
https://doi.org/10.1103/PhysRevD.93.123015

GWTC-2 catalogue 3

¢ LIGO-Virgo Third Observing Run (O3) covered April 2019 to March 2020
= 56 alerts provided in realtime through GCN <« see 10.5281/zenodo.4073262

e GWTC-2 covers the first half of O3 (April 2019 - September 2019)
= ’39 confirmed detections‘ < focus of this talk

Masses in the Stellar Graveyard

in Solar Masses

For each GW, we have:
® time of the event - f‘i
® sky localisation N ’L‘»
® estimated distance -
® estimated masses of the two objects

® can be roughly classified based on masses
(m <3 M@:NS, m >3 M@ZBH)

GWTC-2 plot v
y, Aar

1.0
LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern



https://zenodo.org/record/4073262
https://arxiv.org/abs/2010.14527

The Super-Kamiokande (SK) experiment 4

Experiment running since 1998, located in the Mozumi mine in Japan.
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The different samples

Four samples cover-
ing the neutrino energy
range from few MeV to
O(TeV):

- low-energy (LOWE)
- fully-contained events (FC)

" S o - partially-contained events (PC)

- upgoing muons (UPMU)

Fully-Contained

Low-energy events

LOWE is usually used for so-
lar/supernova analyses.

The other samples are mainly
used for atmospheric analysis.

Partially-Contained
Upgoing muons

E, = 0.1— 100 GeV ) E > 1.6GeV



Follow-up strategy with Super-Kamiokande 6

e Define a 5005 centered on GW time
® Search for events within this time window, in the four SK samples
e Compare observation with expected background and extract neutrino flux upper limits

and compute eventual signal significance by comparing neutrino directions and GW
localisation (only for high-energy SK samples)

High-energy samples
Low-energy sample FC PC UPMU

Standard solar/SRN selection
+ 7MeV energy threshold Standard atmospheric selection

to ensure stable bkg rate

expected background
in 1000 seconds =0.729 0.112 0.007 0.016
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Performed the analysis for the 39 GW in GWTC-2. Three of them were associated to SK

downtime (due to calibration) (one less for low-energy due to HV issues).
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PRELIMINARY

No significant excess was observed in the follow-up analysis.



Ten SK high-energy events in time coincidence

GW190424.180648 GW190426.152155 GW190513.205428 GW190527_092055

7

GW190910.112807 GW190924.021846  All plots are PRELIMINARY
NS~ Skymaps in equatorial coordinates
Red: GW localisation and 90% contour
Blue: SK FC events with 1o angular uncertainty
Green: SK UPMU events.

Shaded area: SK upgoing sky.




Observation significance

Test statistic (TS) has been built to separate signal (point-source) from background (full-sky).
It is used to compute p-values (compared observed TS to background distribution).

PRELIMINARY

GW190424_180648

GW190426_152155

GW190513_205428

GW190527_092055 4

GW190602_175927

GW190620_030421 1

GW190728_064510

GW190814 -

GW190910_112807 A

GW190924_021846

103

p-value

512% 4855%
®  Pspace x L]
Prime % Pspace 12.5%% 100,005
X L]
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X [ ]
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X L]
022% 172%
x ®
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(]
265% .02%
x L]
12.61% 100.00%
- X (]
I 7.20% 57.11%
@ X L]
<
z 6.37% 50.49%
= X ®
T T
102 10-1 10°

The most significant GW+v coincidence is
for GW190602_175927:
p = 0.22%

Considering the number of trials (N = 36
follow-ups), we get a post-trial p-value:

(more details in arXiv:2104.09196)


https://arxiv.org/abs/2104.09196

High-Energy Flux limits (1) 10

Effective area A.g

The neutrino flux is assumed as - = gboE 2 and
Emax f
Nexpected signal — fE dE, AZ{T (Ey, 9) dE

PRELIMINARY

e

For each sample and flavour (ve, e, v, 7,), we define the FC ]
flux likelihood: — o<ozarr iy

- 90<f<135° W v,
...... 135<6<180° W D,

Sample-by-sample flux limits

I
I
effective area [cm?]
s

(Cbo, g, N) = [ M ~(c(Déo+ne) Py () dQ2
with ¢(Q) = [£™ dE, Au(E,, 0)E, and the 90% U.L on w| PREUMINARY 7"
the flux gf)“p is obtained by solving fo L(p)de = 0.9 Ew .
Combined flux limits ; " UPMU
Limits combining FC, PC and UPMU are obtained by using T Greocus (mm v
the combined TS defined before (details in backup). wldd S —

10t 102 10° 10* 10°
E, [GeV]
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triggers

Better limits with the UPMU sample when the GW is below the local horizon. Combined

limits are close to the best individual one.



Limits on E,

® The total energy in v from the source (assuming isotropic) is Eis, = 4md? g—,’__l x EJdE
= Eiso limits obtained by using the 3D localisation skymap from the LVC data release.

® \We can stack events by nature, assuming same emission (or Eiso & Msource in backup).

Individual limits on E " Stacked limits on E2!-flavoursx

1057
¥+ BNS PRELIMINARY —— PRELIMINARY
10% -+ NSBH e <491:10%erg ¥
-+ BBH 3 1056 erg
—_—
A
[— 1056
o —_— _
E T <
" mgosu 9, 1056
38 = s
[ e —a u
...... <4.16-10% erg
- Vo -+
GW190425 —-——— vty
10% o —= Ve + Ve
—- = All-flavor
107 10° b BNS NSBH BBH
distance [Mpc] GW type
cvy ivp=1:1:1)

*This is done assuming the flux at Earth is equally distributed between the flavours (v



Results for the low-energy sample

® For low-energy analysis, the case is simpler as SK acceptance does not depend on
direction.

® Upper limits on fluence are obtained assuming Fermi-Dirac ((E) = 20 MeV):

Noo )
bgp = th M(E,)) = F.-D.
90 = N [ME,)o(E)R(E., En)e(Bun) dE, "t MEY)

e Typical fl limits: (D(Ve) S 5 X 109 Cm727 <D(De) ,S 1x 108 Cmf2
ypical fluence limits: D) S3x 100 em=2, (7)) < 4 x 1010em2 (1 = 1)

e Fi, limits are obtained as in the high-energy case, using the LVC distance estimate:
De 57
EZc < 9.59 x 10°" erg for GW190425 (d ~ 160 Mpc)
It is not very constraining as compared to typical expected emission e.g.,
[model 4 _ 7 x 10%3 ergs! in Phys.Rev.D 93 (2016) 4, 044019

1SO


https://doi.org/10.1103/PhysRevD.93.044019

Summary

® Follow-up analysis of GWTC-2 events using SK low/high-energy samples
® No excess has been observed with respect to expected background.

® Most significant observation is for GW190602_.175927 = post-trial p-value is 7.8% (1.40)

® Flux limits have been computed:
* High-Energy: E>4L d” < 4 x 10! GeV.cm~2 if GW below the horizon (2 x 10% otherwise)

* Low-energy: CD(ye) 5 108 cm2

® Limits on E;, were also extracted, independently event-by-event or by stacking events of

BBH 55
the same nature, e.g. | ES5°" S 4 x 10> erg

¢ Publication on arXiv (2104.09196) and data release on Zenodo. Accepted by ApJ.

¢ Future: possible realtime follow-up (within few days) from O4


https://arxiv.org/abs/2104.09196
https://zenodo.org/record/4724822
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Super-Kamiokande timeline
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List of selected SK events in GWTC-2

PRELIMINARY
Trigger | Sample | At[s] E[GeV] | RA [deg] Dec [deg] 6 [deg] | p-value [%]
GW190424_180648 FC 104.03 0.57 210.82 -58.74 52.08 48.55
GW190426_152155 | UPMU | 278.99 9.52 352.37 -8.46 2.15 100.00
GW190513_205428 FC -183.27  0.68 279.34 -37.27 41.19 8.59
GW190527_092055 FC 248.41 0.48 54.09 18.80 52.08 58.93
GW190602_175927 FC -286.52  2.75 93.67 -38.90 16.22 1.72
GW190620.030421 | UPMU | -327.70  2.33 177.69 -35.59 8.04 100.00
GW190728_064510 FC 102.99 0.19 300.45 29.71 92.51 21.02
GW190814 FC 250.36 1.21 157.59 -9.47 28.26 100.00
GW190910_112807 FC 301.42 1.08 160.13 -22.70 32.09 57.11
GW190924_021846 FC 411.87 0.30 281.38 -54.52 73.58 50.49




Observation significance 19

How likely the SK observation is associated to background, given time-+space correlations?

The p-value can be dissociated in ’p = Ptime X Pspace | With:

® ptime = Prob(N > 1) =1 — e "8 ~ 12.6% for ng = total background (rc+pcrupmu) = 0.13
® DPspace IS Obtained by comparing neutrino direction and GW localisation*

® For each sample (k = FC, PC or UPMU), define the point-source likelihood /.Z,(,k)(n(sk),*y;Qg)
that separates background from signal (dn/dE o E~7, direction Qs).

® Compute the maximum log-likelihood ratio A (GW localisation Pgw used as prior) and find
the source direction Qg thit\maximises it:
£,(n¥), 1K) 0
A(Qs) =25, In (”fk)” s)
L,(ng’ =0;Qs)

+2InPew(Qs) and | TS = max [A(Q)]

® Compare TSgata With the expected background distribution (with N > 1) to obtain pspace.

*lceCube collaboration. IceCube Search for Neutrinos Coincident with Compact Binary Mergers from LIGO-Virgo's First Gravitational-wave Transient Catalog.
Astrophys.J.Lett. 898 (2020) 1, L10


https://doi.org/10.3847/2041-8213/ab9d24

Test statistic

For each sample k, we define the likelihood:
()40 )

L9 Q) = & 70 N N6 S0 Eis.0) 4B )
v nS y Vi ALS) = NN i=1 ngk)+ng<)

where S() and B are the signal/background p.d.f. (characterizing detector response).
Then, we compute the log-likelihood ratio:

£, A10; Q)
El,(ngk) = O; Qs)

A(Qs) :2Zk|n +2InPew(Qs)

The final test statistic and p-value are:
TS = max [A(R2)] and pspace = f;gdm Prie(TS)dTS

where Py ( TS) is the expected background distribution.



Combined flux/Ei, limits

® Flux: We define the following likelihood by using the TS defined before:

£ TtaarPan) = 5o [ o-ct0in s (7S50)] x Per() 0

where P;(TS) is the distribution of the test statistic assuming the signal consists in i
events, assuming E~2 spectrum (dn/dE = ¢oE~2). The 90% upper linit is obtained as

above (f0¢gp L(¢po)dpo = 0.90).
e Total energy: Same for Ej, limits:

r Q iso —(r 3 i
ﬁ(ElSO Tsdatm’ ka =0 {%6 ( ’Q)Elso X ’PI(< (Tsdata) X V(Gl)/l/(r7Q)dQ




Stacking population analysis

We combine the likelihoods within a given population*:
® Assuming same expected Eig, for all events:
L£7P(Eisor { TSaara) "}, Ve }) = TT: £(Eisoi TSaaea) ™, Vi)
® Assuming neutrino emission scales with object total mass M:
L8P(f; { TSaua) '}, (Ve } AMED) = T, S MELLE ML TSiaea)?, Vi Jpaw (M )AME,

107 195 —=— dH ,
PRELIMINARY - PRELIMINARY
.8 <4.91-10% erg + 8 1056
L7 I S
]
g 5 g $
© E 10%¢ % §’ b
:’D 3 w g
w S
.E ______ " <4.16-10° erg gﬂ i Vu <1.06-10% erg/Mo
e ——— 'é R I
a —= Ve+ Ve s — = Vet Ve
2] — All-flavor PP Ty vt (7] — All-flavor
© ¥ 7]
BNS NSBH BBH © BNS NSBH BBH
GW type GW type

*Veske et al. JCAP 05 (2020) 016


https://arxiv.org/abs/2001.00566

Comparison with ANTARES and lceCube

Experiment ‘ Super-Kamiokande ANTARES IceCube
Energy range 0.1-10° GeV TeV-PeV 10-10°° GeV
E2%dn/dE limits (min) | 4 x 10! GeVcm~2 1GeVcm~2 0.03 GeV cm~2
E2dn/dE limits (max) | 2 x 103 GeVcm—2 9 GeV cm~2 0.6 GeV cm~—2
Reference this work Poster ©CRvMM  PoS-ICRC2019-918

This is assuming £~2. The situation will be in favour of SK for v > 2 (e.g. E~3).


https://indico.in2p3.fr/event/20789/contributions/89402/
https://arxiv.org/abs/1908.07706
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