# Improvised Explosive Devices and cosmic rays

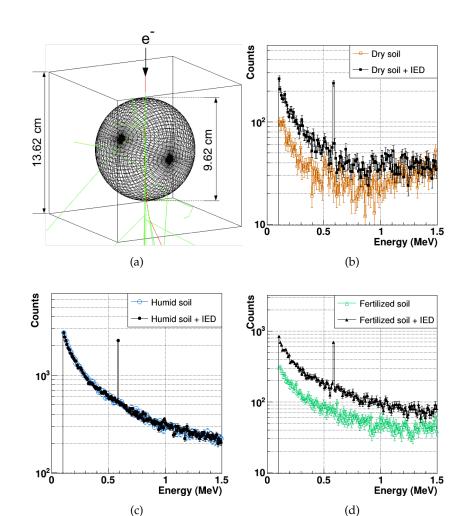
## **Executive Summary**

A. Vásquez-Ramíre $z^a$ , M. Ariza-Góme $z^b$ , M. Carrillo-Moreno $^b$ , V.G. Baldovino-Medrano $^b$ , H. Asorey $^{c,d}$  and L.A. Núñe $z^{a,e}$ 

#### What is this contribution about?

We present theoretical results that suggest that cosmic rays can be used to detect the type of anti-personal mines used in Colombia.

### Why is it relevant/interesting?


- Homemade anti-personnel mines are Improvised Explosive Devices (IEDs) that kill thousands of civilians every year, spreading fear and disruption across affected communities.
- The detection and dismantling of such harmful devices must alleviate the consequences of the internal conflicts.

### What has been done?

- GEANT4 simulation of an ANFO sphere of NH4NO3+diesel, a typical IED found in Colombia, interacting with cosmic rays flux at the Bucaramanga level (959 m a.s.l.) as shown in fig. (a).
- Simulations considered IEDs buried into different soil types: dry soil model, two humid soils, and two fertilized soils.

#### What is the result?

- Protons' energy led to an excess of around 0.58 MeV.
- This peak is quite pronounced for all soil models (fig. (b), (c) and (d)), giving a clear indication of the feasibility of using a cosmic ray-based detector for detecting these type of rustic explosive in the different types of soils.



<sup>&</sup>lt;sup>a</sup> Escuela de Física, Universidad Industrial de Santander, Bucaramanga, Colombia.

<sup>&</sup>lt;sup>c</sup>Instituto en Tecnologías de Detección y Astropartículas, Buenos Aires, Argentina.

<sup>&</sup>lt;sup>e</sup>Departamento de Física, Universidad de Los Andes, Mérida, Venezuela.

<sup>&</sup>lt;sup>b</sup>Escuela de Ingeniería Química, Universidad Industrial de Santander, Bucaramanga, Colombia.

<sup>&</sup>lt;sup>d</sup>Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.