Determination of Expected TIGERISS Observations

Brian F. Rauch^a, Nathan E. Walsh^a and Wolfgang V. Zober^a for the TIGERISS Collaboration

^aDepartment of Physics and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130 USA

イロト イポト イヨト イヨト

TIGERISS Instrument

Technical model of TIGERISS detector stack (left). TIGERISS instrument model shown mounted on the JEM-EF pallet (right), with ample space for thermal, power and electronics systems. The results shown assume detector dimensions that are compatible with the ISSCREAM JEM-EF mounting location.

Configurations

Left to right:

JEM-EF configuration: ExPRESS Logistics Carrier (ELC): ESA Columbus Laboratory ext. payload:

167.0 cm(L) 67.0 cm(W) 40.0 cm(T) ~ 105.0 cm(L) 75.0 cm(W) 40.0 cm(T) ~ 97.79 cm(L) 74.93 cm(W) 35.08 cm(T) ~

 $\begin{array}{c} \sim\!\! 1.66 \ m^2 \ \text{sr} \\ \sim\!\! 1.10 \ m^2 \ \text{sr} \\ \sim\!\! 1.16 \ m^2 \ \text{sr} \end{array}$

(ロ) (同) (ヨ) (ヨ)

Modeling Geomagnetic Screening

The geomagnetic latitudes correspond to different vertical cutoff rigidities. The critical momentum needed to penetrate the geomagnetic field scales with the geomagnetic latitude and East-West angle as shown in the figure.

Brian Rauch (WUSTL (TIGERISS))

ISS Weighted Vertical Cutoff Rigidities

Left: The fraction of the ISS orbit spent at each vertical cutoff rigidity. **Right:** The solar maximum and minimum iron spectra are integrated and scaled using relative abundances of heavier elements.

Brian Rauch (WUSTL (TIGERISS))

East-West Geometry Factors

The TIGERISS instrument differential geometry factor is mapped over all possible particle incidence angles (θ) and East-West angles (γ) and modelled for all ISS inclination angles with 1 degree resolution. Two such maps are shown, in which the East-West angle is aligned with the instrument major (**left**) and minor (**right**) axes.

Predicted TIGERISS

Predicted abundances measured by TIGERISS after 1 year of operation are comparable to those measured by SuperTIGER over its 55 day long-duration-balloon flight

Acknowledgements

Work shown here supported by the McDonnell Center for the Space Sciences and the Peggy and Steve Fossett Foundation

ヘロト ヘヨト ヘヨト ヘ