Searching for Dark Matter-Neutrino Scattering in the Galactic Centre with IceCube

ICRC 2021

Carlos Argüelles <u>Adam McMullen</u> Austin Schneider Aaron Vincent

Motivation: Dark Matter

2

General Idea

 An isotropic extragalactic neutrino flux is preferentially attenuated at the galactic centre from dark matter-neutrino scattering

Thank You

Extra Slides

Motivation: Building on Past Work High Energy Starting Events (HESE)

Different Data Set: Medium Energy Starting Events- Cascades (MESE-C)

• We will use the 7 year MESE cascade dataset

M. G. Aartsen, et al., Search for sources of astrophysical neutrinos using seven years of icecube cascade events (2019)

Dark Matter Density Profiles

 In this analysis the NFW profile was used

• $r_s = 26 \text{ kpc}$

M. Benito, F. locco and A. Cuoco, Uncertainties in the galactic dark matter distribution: an update, 2009.13523.

New Physics Models

We look for four effective DM-neutrino interaction processes:

Method: Markov Chain Monte Carlo Sampler

Kernel Density Estimation

Sample	1	2	3	4	5	6
Value	-2.1	-1.3	-0.4	1.9	5.1	6.2

Spectral Index Validation

 Emcee was used to confirm the likelihood recovers the expected background parameters for no dark matter

dE

astro

	γ	$-2.70^{+0.06}_{-0.05}$				
	Ф _{astro}	2.18+0.20				
	Φ_{atm}	0.96 ^{+0.05} _{-0.04}				
	Δγ	$0.11^{+0.04}_{-0.04}$				
љ <i>atm</i>	$\langle r \rangle - \Delta \gamma$	doastro	(F		

Posteriors on DM Parameters

• Sensitivities can be set with the posterior probabilities on the dark matter mass m_{χ} , mediator mass m_{ϕ} and coupling strength g

Scalar scalar model

Conclusions

- Neutrino-DM scattering is motivated by cosmology
- The neutrino flux would be preferentially attenuated in the direction of the galactic centre
- Sensitivities at IceCube can beat cosmology

Next Steps

- Will explore other models
- Will determine constraints with unblinded IceCube data

Motivation: Particle dark matter and DM-neutrino interactions in cosmology

Full Posterior

scalar dark matter Scalar mediator

Neutrino Interactions at IceCube

Event Morphologies

The IceCube Detector

Grand Unified Neutrino Spectrum

Spectral Index Expectation

Astrophysical Neutrinos

$$p + p \rightarrow N[\pi^{0} + \pi^{+} + \pi^{-}] + X$$
$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$
$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu}$$

$$\frac{d\Phi^{astro}}{dE} = \Phi_{astro} \left(\frac{E_{\nu}}{100 \text{ TeV}}\right)^{-\gamma} \cdot 1 \times 10^{-18} \text{GeV}^{-1} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$$

Atmospheric Neutrinos

 $\frac{d\Phi_{\nu}^{atm}}{dE} = \Phi_{con\nu} \left(\frac{E_{\nu}}{E_0^p}\right)^{-\Delta\gamma_{CR}}$

Spectral Index Best Fits

Dark Matter Detection Methods

Motivation: Dark Matter Sources

Cosmic rays

Dwarf Galaxies

Sun

Galactic Centre

Cosmic Microwave Background

Large Scale Structure

Dark Matter Column Density

Cross Sections: scalar-scalar

Reconstruction Techniques

Probability Density Functions KDE

0

Bandwidth=0.2

PDFs: Kernel Density Estimation

KDE Figure Of Merit

Method 1: Forward / KDE

Generation Weight

$$p_{\rm MC} = N_{\rm gen} \frac{1}{\Omega_{\rm gen} A_{\rm gen}} \times \frac{\rho_{\rm gen}(\ell)}{X_{\rm gen}^{\rm col}} \times \frac{1}{\sigma_{\rm tot}} \frac{\partial^2 \sigma}{\partial x \partial y} \times \frac{\Phi(E)}{\int_{E_{\rm min}}^{E_{\rm max}} \Phi(E) dE}$$

Theory

b, I: galactic latitude, longitude

column density:
$$au(b,l) = \int_{l.o.s} n_{\chi}(x;b,l) \ dx.$$

$$\frac{d\Phi(E,\tau)}{d\tau} = -\sigma(E)\Phi(E,\tau) + \int_{E}^{\infty} d\tilde{E} \frac{d\sigma(\tilde{E},E)}{dE} \Phi(\tilde{E},\tau)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
scattering **from** *E* scattering **to** *E* from any energy \tilde{E}

DarkFate Development

Based on vFATE: Neutrino Fast Attenuation Through Earth

$$\begin{split} \frac{d\Phi(E,\tau)}{d\tau} &= -\sigma(E)\Phi(E,\tau) + \int_{E}^{\infty} d\tilde{E} \frac{d\sigma(\tilde{E},E)}{dE} \Phi(\tilde{E},\tau) \\ E \to \vec{E} & \Phi \to \vec{\Phi} & C_{ij} = d\tilde{E}_{i} \frac{d\sigma}{dE} (\tilde{E}_{i},E_{j}) \\ \vec{\Phi}'(\tau) &= -(\operatorname{diag}(\vec{\sigma}) + C)\vec{\Phi}(\tau) & \lambda_{i} \text{ eigenvalues} \\ \vec{\Phi}_{i} \text{ eigenvectors} \\ \vec{\Phi} &= \sum c_{i}\hat{\phi}_{i}e^{\lambda_{i}\tau} \end{split}$$

The IceCube Detector

- Cherenkov light detector
- Located at the South Pole
- Detects light from secondary charged particles

