

Ultra-High-Energy Cosmic Rays and Neutrinos from Relativistic Jets of Active Galactic Nuclei

1

Rostom Mbarek with: Damiano Caprioli Kohta Murase

The *espresso* mechanism: A brief Introduction

To get UHECRs:

SEEDS: galactic CRs with energies up to ~ 3Z PeV**STEAM: AGN jets** with Lorentz factors Γ up to ~ 20-30

The *espresso* mechanism and the chemical composition

Fluxes and chemical composition above 10¹⁵ eV from *espresso* model compared with UHECR data.

Consistent with results from the Auger collaboration (2017)

Espresso in relativistic MHD Jet Simulations

3D Simulation with PLUTO (Mignone et al. 2010)

Jet is initialized with $\Gamma = 7$, but the effective value $\Gamma_{eff} = 3.2$

2D slice of Particle Trajectories

Particle Trajectories with subgrid magnetic fluctuations

With Bohm diffusion

- * We examine the following questions:
 - What are the effects of losses on accelerated particles?
 - * What is the expected spectrum of UHE neutrinos produced by a typical AGN?
 - * If AGNs are the sources of UHECRs, can they be responsible for the IceCube flux?
 - * What are the implications for multimessenger astronomy ?

Photon Field Prescription and Neutrino Production routes

Proton and Nucleus Interactions

Photodisintegration Interactions

2D slice of the Jet density map with the nonthermal continuum cone of influence (angle $1/\Gamma_{eff}$)

Effects of losses on UHECR spectrum

Takeaway messages:

- * Photodisintegration effects are not significant (Consistent with Auger results)
- * UHECR spectrum still heavy at highest energies (Consistent with Auger results)
- Peak at 10^{18} eV is associated with reaccelerated secondary protons (More prominent for q = 1)

Neutrino Spectra

- Takeaway messages:
 - Source neutrinos could be significant
 - Can estimate the source neutrino flux contribution based on the relative normalization with the UHECR flux
 - Neutrinos from neutron decay are more prominent at lower energies for q=1

q is the slope of the injection spectrum $\propto E^{-q}$

Source vs. Cosmogenic Neutrinos

- * Takeaway message:
 - Source neutrinos

 have a comparable
 flux to that of
 cosmogenic
 neutrinos
 - For flatter injection
 spectra, neutron
 decay neutrinos
 are significant

Cosmogenic neutrinos calculations are taken from Batista et al. (2019) modeled based on an AGN source evolution with different confidence levels

IceCube neutrinos?

- * Takeaway message:
 - The AGN jet stationary neutrino spectrum cannot explain the IceCube neutrino flux
 - Neutrinos could correlate with flares since nonthermal contribution dominates (ν and γ-ray flare from TXS 0506+056 possibly correlated)

Different magnetic field and radius prescriptions

Conclusions

- Our framework is a self-consistent bottom-up approach for studying the multi-messenger connection between UHECRs and neutrinos
- * AGN jets cannot explain the whole of IceCube's neutrino spectrum, **BUT** neutrinos should correlate with flares
- The source neutrino flux with energies > 10¹⁷eV could be comparable to cosmogenic neutrinos
- * Our predictions are testable with a well-studied particle acceleration theory behind all of our predictions