

Observations of track-like neutrino events with Baikal-GVD

Dmitry Zaborov

(Institute for Nuclear Research of Russian Academy of Sciences)

for the Baikal-GVD Collaboration

Baikal-GVD

- km³-scale neutrino detector under construction in Lake Baikal
- 8 strings per cluster
- 36 optical modules (OMs) per string
- One 10-inch PMT
 per OM

See talk by I. Belolaptikov

χ^2 -like track reconstruction

July 16, 2021

D. Zaborov, Observations of track-like neutrino events with Baikal-GVD Slide 3 of 14

Two event types: single-cluster and multi-cluster

Single-cluster events:

- Low energy threshold
- Optimal sensitivity to nearly vertical tracks
- 90% of the recorded event sample

Multi-cluster events:

- Higher energy threshold
- Optimal sensitivity to inclined tracks
- 10% of the recorded event sample

Dataset used in this work

April 1 – June 30, 2019

GVD cluster	Number of active OMs	Dataset duration, days
1	270	68
2	273	72
3	288	74
4	288	61
5	288	47
1–5 combined single-cluster	1407	323

Single-cluster analysis: zenith distribution before quality cuts

~ 9 800 000 events reconstructed with at least 8 hits on at least 2 strings

Good agreement for cos(zenith) > 0.2

MC underpredicts the rate of misreconstructed events in the upgoing region by a factor of 3.5

NB: most of these events are muon bundles (average multiplicity ~ 10)

July 16, 2021

D. Zaborov, Observations of track-like neutrino events with Baikal-GVD

Single-cluster analysis: fit quality parameter

upgoing: θ > 120°

Shown is the fit quality distribution for events reconstructed as upgoing with cos(zenith) < -0.5

The atmospheric muon MC has been re-scaled by a factor of 3.5

July 16, 2021

D. Zaborov, Observations of track-like neutrino events with Baikal-GVD

Slide 7 of 14

Single-cluster analysis: upgoing neutrino search

Neutrino selection based on

- zenith angle
- fit quality
- additional cuts

MC expected: 43.6

- atm. neutrino: 43.6
- atm. muons: < ~ 1

Observed events: 44

Good agreement with MC for atmospheric neutrino

Median energy of this sample ≈ 500 GeV

Single-cluster analysis: Nhit distribution

Good agreement between data and MC

Apparent excess for N_{hits} = 17, 18 & 19 has a p-value ~ 0.05

Reconstructed energy

Example plot for a set of neutrino candidate events

- dE/dx energy estimator see poster by G. Safronov
- Works for E > 1 TeV
- Largest measured energy in cut-based low-energy neutrino candidate sample: 9.3 TeV

evt. 473478 $\theta = 165.5^{\circ}$ $N_{strings} = 3$ $N_{hits} = 10$ Slide 10 of 14

July 16, 2021

D. Zaborov, Observations of track-like neutrino events with Baikal-GVD

Notes

- The reconstruction and analysis were optimized for low-energy atmospheric neutrinos (~ 1 TeV)
- Sub-optimal neutrino efficiency due to conservative cuts
- A factor 2 improvement in analysis efficiency is possible (see poster by G. Safronov)

Multi-cluster analysis : MC expectations

- In the 5-cluster detector, after cuts on the fit quality and other variables, we expect 29.4 multi-cluster events per year due to atmospheric neutrinos
- Median energy ~ 4 TeV
- The analysis will be applied to real data as soon as is the multicluster calibration is fully validated

Conclusion

- Using a simple χ^2 -based track reconstruction algorithm, we observe atmospheric neutrinos
- The observed rate, zenith distribution and energy distribution are in good agreement with MC predictions
- Shown here is only a small fraction of the collected data; further data analysis is imminent

Backup slides

Multi-cluster analysis: reconstructed zenith angle distribution

after cut on reconstructed track length

• The mutli-cluster event selection and the track length cut are very effective at suppressing misreconstruced atmospheric muon events

July 16, 2021

D. Zaborov, Observations of track-like neutrino events with Baikal-GVD Slide 16 of 14

The low noise period of the 2019 season

July 16, 2021

D. Zaborov, Observations of track-like neutrino events with Baikal-GVD Slide 17 of 14

July 16, 2021

D. Zaborov, Observations of track-like neutrino events with Baikal-GVD Slide 18 of 14

Simulations

- Atmospheric muons
 - CORSIKA 5.7 + QGSJET
 - 1 yr effective livetime
- Atmospheric neutrinos
 - ν_{μ} CC and $\overline{\nu}_{\mu}$ CC only
 - Bartol flux (Phys. Rev. D53 (1996) 1314)
 - Neutrino oscillations ignored
- Detector simulations
 - Muons propagated with MUM
 - Simplistic parameterized shower model

Additional cuts for neutrino selection

- Sum of hit amplitudes (> 18 p.e.)
- Visible track length (> 75 m)
- Hit density along the track length (> 1/42 m⁻¹)
- Combined hit likelihood ($P_{hit} > 0.05$)
- Combined likelihood for non-hit OMs (P_{nonhit} > 0.1)
- Effective width of time residual distribution
- Zenith angle error estimate (< 2°)
- Average track hit distance (< 18 m; this acts as a containment cut; may suppress high energy neutrinos)