

A Spectral Cosmic Ray Model for Cosmological Simulations

Ludwig Böss • Klaus Dolag • Harald Lesch

ICRC - 16.7.2021

Motivation

- CRs -> relativistic, charged particles
- Tracers of magnetic field
- Additional non-thermal pressure component from CR protons (very small in clusters)
- Observable Radio Relics and Radio Halos

van Weeren+19

Color:Spectral indexContours:Radio intensity

4 Basic assumptions

- Every SPH particle contains a population of CRs -> additional fluid component.
- CRs are distributed in momentum space following a piece-wise power law function.
- 3. Boundary conditions:
 - Bottom: Open
 - Top: Closed
- 4. CRs follow gamma-law equation of state.

$$P_{CR} = (\gamma_{CR} - 1)\rho E_{CR}$$
$$f(p) = f_i \left(\frac{p}{p_i}\right)^{-q_i}$$

Diffusion-convection Equation f(x, p, t)

- 1) Advection
- 2) (Spatial) Diffusion
- 3) Expansion/Collapse
- 4) Radiative losses
- 5) Diffusion in momentum-space
- 6) Source term
- 7) Catastrophic losses

Diffusion-convection Equation f(x, p, t)

- 1) Advection
- 2) (Spatial) Diffusion
- 3) Expansion/Collapse
- 4) Radiative losses
- 5) Diffusion in momentum-space
- 6) Source term
- 7) Catastrophic losses

Sources - Shocks

- On-the-fly shockfinder (Beck+16)
- At the shock: Shock Energy is converted to CR Energy
- Energy conversion efficiency dependent on shock mach number and B-field geometry
- Spectral slope dependent on shock compression + B-field

Sources - Shocks

- 4 Mach number dependent efficiency models
- 1 Geometry dependent efficiency model

 $\eta(M,\theta_B) = \eta(M) \cdot \eta(\theta_B)$

Caprioli & Spitkovsky 2014

7

Pais+18

Pfrommer+17 Test

Ryu+19 efficiancy

Radiative Losses

Currently implemented:

• Losses due to synchrotron radiation.

$$b_{l,syn} \propto U_B p^2$$
 $U_B = rac{B^2}{8\pi}$

$$b_{l,ic} \propto U_{CMB} p^2$$

$$U_{CMB} \sim (1+z)^4$$

Ludwig Böss - ICRC - 16.7.2021

Inverse Compton scattering

 $N_bins = 192$

Ludwig Böss - ICRC - 16.7.2021

Synchrotron Emission at 1.44 GHz

$N_bins = 192$

Ludwig Böss - ICRC - 16.7.2021

Bringing it all together

Cluster Merger

Cluster Merger

$N_bins = 96$

	$\Sigma_g [g cm^{-2}]$			ΤĮ	[K]	Β [μG]			
101	102 8 -0	10 ³	$10^4 10^6$	10 ⁷	10 ⁸	$10^{9}10^{-2}$	10 ⁻¹	100	101
			_						
		$5h^{-1}M$	pc						

Initial Conditions from ToyCluster (Donnert 2014)

Cluster Merger

$N_bins = 96$

Radio Relics

- We observe spectral steepening over the relic
- Larger acceleration zone (resolution!)
- Flatter sprectra due to stronger shock

Conclusion

- Hydrosolver stays stable with the 2-fluid model.
- Capturing the acceleration efficiency is quite accurate.
- The cooling model shows nice convergence to analytic solution.
- Future work: Zoom simulations with working model to see effect on cosmological scales.

Thank you for your attention!

