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 Past attempts to detect M31 in gamma rays: 

 SAS-2 (Fichtel+ 1975) 
 COS-B (Pollock+ 1981) 

 EGRET (Sreekumar+ 1994, Hartman+ 1999)

 The Fermi era: 

 Detection >100 MeV gamma-rays (Abdo+ 2010; Ögelamn+ 2011) 
 No correlation with disk, emission from inner 5 kpc (Ackermann+ 2017) 

 Fermi Bubbles-like structure? (Phsirkov+ 2016)
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A giant gamma-ray halo around M31
Karwin et al., 2019

 28ox28o region 
 excess found up to ~200 kpc 
 possible contamination from 
disk (North) —> <120 kpc 
 power law + cutoff  
or simple power law fit to data
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Fast cooling regime —> Le = L�

which is, in both scenarios, similar to the CR output of the Milky Way 
—> tight, but feasible energy budget
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Problems…

Leptonic: losses are too effective
energy loss time very short —> impossible for electrons to fill a region of size ~100 kpc 

Standard picture for CR origin in the MW: CRs are accelerated at sources in the disk, and  remain confined 
for 10s of millions of years in the halo. Is this picture a good description of what we see from Andromeda?

Hadronic: large spatial gradients
extremely long loss time —> protons are loss free

the transport in the halo is due to spatial 
diffusion + advection in a galactic wind

in this context, explaining the gamma ray halo 
would require a very large CR density in the 
disk —> the disk is not as bright as needed

models predict a drop of CR density with 
height above the disk

Recchia et al., 2016
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B-field amplification at shocks: 
fraction of shock ram pressure 

converted into magnetic pressure
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 Often present in central regions of galaxy 

clusters, inflated by AGN activity 
 Typical radii of several kpc’s 
 Rise velocity ~ sound speed ~ 100 km/s 
 Lifetime (hydro): Τb ~ 100 Myr 
 Stabilising effect of B-fields: Τb ≳ 1 Gyr 
 Huge energy reservoir: Wb ~ 1057-1059 erg

Fermi bubbles

 Fermi bubbles 

 Originated by SMBH or star forming activity 
 Radius ≳ 10 kpc 
 Age: few to few tens Myr 
 Power ~1041-1043 erg/s —> 1055-1057 erg 
 Are Fermi bubbles the base of a larger structure?



Way out #2: buoyant bubbles

 Proposed scenario 
 CR protons (loss free) transported to the halo inside buoyant bubbles 
 in a disruption time they rise up to ~100 kpc 
 after disruption CRs are released in the halo 
 they spread diffusively in a time Τdiff 
 bubbles are produced at the GC with a frequency νb 
 νb  > 1/Τdiff —> continuous injection of CR in the halo 
 assume                             and ⌫b = 10�8yr�1 Eb = 1057Eb,57erg



Way out #2: buoyant bubbles

 Proposed scenario 
 CR protons (loss free) transported to the halo inside buoyant bubbles 
 in a disruption time they rise up to ~100 kpc 
 after disruption CRs are released in the halo 
 they spread diffusively in a time Τdiff 
 bubbles are produced at the GC with a frequency νb 
 νb  > 1/Τdiff —> continuous injection of CR in the halo 
 assume                             and ⌫b = 10�8yr�1 Eb = 1057Eb,57erg



Way out #2: buoyant bubbles

 Proposed scenario 
 CR protons (loss free) transported to the halo inside buoyant bubbles 
 in a disruption time they rise up to ~100 kpc 
 after disruption CRs are released in the halo 
 they spread diffusively in a time Τdiff 
 bubbles are produced at the GC with a frequency νb 
 νb  > 1/Τdiff —> continuous injection of CR in the halo 
 assume                             and ⌫b = 10�8yr�1 Eb = 1057Eb,57erg

Average CR luminosity in the halo —> LCR ⇠ 3⇥ 1041⌘Eb,57⌫b,�8erg/s



Way out #2: buoyant bubbles

 Proposed scenario 
 CR protons (loss free) transported to the halo inside buoyant bubbles 
 in a disruption time they rise up to ~100 kpc 
 after disruption CRs are released in the halo 
 they spread diffusively in a time Τdiff 
 bubbles are produced at the GC with a frequency νb 
 νb  > 1/Τdiff —> continuous injection of CR in the halo 
 assume                             and ⌫b = 10�8yr�1 Eb = 1057Eb,57erg

Average CR luminosity in the halo —> LCR ⇠ 3⇥ 1041⌘Eb,57⌫b,�8erg/s

CR acceleration efficiency

⌘ ⇠ 0.2 E�1
b,57⌫

�1
b,�8

�
ngas/10

�3cm�3
��1

(⌧res/3 Gyr)�1



Way out #2: buoyant bubbles



Way out #2: buoyant bubbles
Scenario A —> cutoff @10 GeV

cutoff in the parent CR proton spectrum @100 GeV



Way out #2: buoyant bubbles
Scenario A —> cutoff @10 GeV

cutoff in the parent CR proton spectrum @100 GeV

⌧diff ⇠ R2
H

6 D(E)

D(E) —> energy dependent CR diffusion coefficient

Diffusion time —>



Way out #2: buoyant bubbles
Scenario A —> cutoff @10 GeV

cutoff in the parent CR proton spectrum @100 GeV

⌧diff ⇠ R2
H

6 D(E)

D(E) —> energy dependent CR diffusion coefficient

Diffusion time —>

⌫b > 1/⌧diff

⌫b < 1/⌧diff

—> stationary

—> intermittent



Way out #2: buoyant bubbles
Scenario A —> cutoff @10 GeV

cutoff in the parent CR proton spectrum @100 GeV

⌧diff ⇠ R2
H

6 D(E)

D(E) —> energy dependent CR diffusion coefficient

Diffusion time —>

⌫b > 1/⌧diff

⌫b < 1/⌧diff

—> stationary

—> intermittent ener
gy d

epen
dent

!—> low E

—> high E



Way out #2: buoyant bubbles
Scenario A —> cutoff @10 GeV

cutoff in the parent CR proton spectrum @100 GeV

⌧diff ⇠ R2
H

6 D(E)

D(E) —> energy dependent CR diffusion coefficient

Diffusion time —>

⌫b > 1/⌧diff

⌫b < 1/⌧diff

—> stationary

—> intermittent ener
gy d

epen
dent

!—> low E

—> high E

⌫b ⇠ 1/⌧diff (100 GeV) D(100 GeV) ⇠ 5⇥ 1030
✓

RH

100 kpc

◆2

⌫b,�8 cm2/s



Way out #2: buoyant bubbles
Scenario A —> cutoff @10 GeV

cutoff in the parent CR proton spectrum @100 GeV

⌧diff ⇠ R2
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D(E) —> energy dependent CR diffusion coefficient

Diffusion time —>

⌫b > 1/⌧diff
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⌫b ⇠ 1/⌧diff (100 GeV) D(100 GeV) ⇠ 5⇥ 1030
✓

RH

100 kpc

◆2

⌫b,�8 cm2/s

very plausible value
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Taylor, SG, Aharonian (2014) proposed that 
CR p-p interactions in a huge gaseous halo 
surrounding the Milky Way might explain 
the isotropic diffuse flux of neutrinos 

observed by Icecube (black data points and 
green curve), without violating the limits 

imposed by the isotropic gamma-ray 
background (blue data point and pink curve)

what if giant CR halos are a 
common feature of galaxies?

Requires a CR proton spectrum 
extending to the multi-PeV domain
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M31 and the MW:are giant halos common?

if giant CR halos are a common feature of galaxies it is possible to explain 
simultaneously Icecube neutrinos and the diffuse gamma ray emission around M31

SMBH activity —>

Accretion shock —> (M31/MMW )2/3 ⇠ 3

(MSMBH,31/MSMBH,MW ) ⇠ 33
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Conclusions

 The extended gamma-ray halo detected from M31: 

 can be explained both in terms of leptonic and hadronic processes 
 standard models of CR production in Galactic disks DO NOT WORK 

 first scenario: very large scale (~100 kpc) accretion/termination shock 
 second scenario: CR buoyant bubbles

 Similarity with the Milky Way? 
 a giant halo of gas surrounding the MW is known to exist 

 giant halos might be a common feature of spiral galaxies (?) 
 circumgalactic gas —> target for CR p-p interactions 

the same interactions responsible for the gamma-ray emission from the 
halo of M31 could take place in the MW halo and produce neutrinos at the 
level of the isotropic flux observed by IceCube!


