HELMHOLTZ Young Investigators

High-Energy Neutrinos from Core-Collapse Supernovae

Neutrino Production Scenarios Type IIn ν only Type lbc Type IIP? ν(&γ) Neutron Star Credit: Kowalski&Bartos [1] Particle Acceleration in Supernovae

Choked-jet Supernovae [2]

- jet is emanating from the collapsing core
- neutrinos produced when it is interacting with the remaining envelope
- associated spectral type: **lbc**

- **interacting** Supernovae [4]
- supernova explosion in dense circumstellar medium (CSM)
- shock fronts develop \rightarrow particle acceleration
- associated spectral type: IIn, possibly IIP

Time Models

- box window, 20 days prior to explosion
- box window, 100, 300 and **1000 days** after explosion
- decaying flux $\sim (1 + t/t_{pp})^{-1}$

with $t_{\rm pp}$ = 0.02, 0.2 and 2.0 years, starting at explosion

flux normalisation from

- measured test statistic if measured test statistic > background test
- Emitted **Neutrino**

Energy

Total

- Assume spectra index $\gamma \rightarrow$ limit on energy emitted in neutrinos per supernova
- limits in erg for $\gamma = 2.5$:
 - IIn: 6.4×10^{49} , IIP 1.1×10^{49} , Ibc 8.7×10^{48} , Ibc choked jet 5.0×10^{48}

¬ Neutrino Dataset

The 7 year Point Source sample [5]

- high angular resolution, throughgoing track events
- used for looking for correlation between neutrino emission and sources detected with other messengers
- April 2008 May 2015

Supernova Catalogue

Assembly from Open Extracting High-Quality Source Catalogues

Catalogue

apart

merging by requiring

angular distance

 $\Psi \ge 0.1^\circ$ or **50 days**

• 387 IIn, 167 IIP, 824 lbc

Subsample

- sources from WiseRep, calculate expected flux **ASAS-SN** survey data under assumption of E^{-2} and Open Supernova spectrum
 - order by expected flux
 - high-quality sample: brightest sources, that contribute **70% of the** total expected flux
 - final sample: 15 lln, 20 IIP and 19 lbc

Stacking Likelihood

background test statistic if measured test statistic < background test statistic

$$\mathscr{L}(\overrightarrow{n_{s}},\gamma) = \prod_{i=0}^{N} \left[\frac{1}{N} \sum_{j=0}^{M} n_{s,j} \cdot \mathscr{S}_{j}(\theta_{i},\gamma) \right]$$

- signal PDF \mathcal{S} : depends on neutrino properties θ and spectral index assumption γ
- background PDF \mathscr{B} modelled from data
- **Stacking** *M* sources, looking for correlation with *N* neutrino events
- free parameters: spectral index γ , number of neutrinos from each source: $\overrightarrow{n_s} = (n_{s,1}, n_{s,2}, ..., n_{s,M})$

Jannis Necker (DESY) for the IceCube Collaboration

Constraining the Neutrino flux from Supernovae

- neutrino flux

