
The Monitoring, Logging, and Alarm systems for the 
Cherenkov Telescope Array Alessandro Costa1,4, Kevin Munari1,4, Federico Incardona1,4, Pietro Bruno1,4, Stefano Germani2,4, Alessandro Grillo1,4,

Igor Oja3,4,Eva Sciacca1,4, Ugo Becciani1, Mario Raciti1

for the CTA Consortium 
1INAF, Osservatorio Astrofisico di Catania, Via S Sofia 78, I-95123 Catania, ITALY, 
2Università di Perugia, Dipartimento di Fisica e Geologia, IT
3CTAO gGmbH
4For The CTA Consortium see www.cta-observatory.org

ABSTRACT
We present the current development of the Monitoring, Logging and Alarm subsystems in the framework of the Array Control and Data
Acquisition System (ACADA) for the Cherenkov Telescope Array (CTA). The Monitoring System (MON) is the subsystem responsible for
monitoring and logging the overall array (at each of the CTA sites) through the acquisition of monitoring and logging information from
the array elements. The MON allows us to perform a systematic approach to fault detection and diagnosis supporting corrective and
predictive maintenance to minimize the downtime of the system. We present a unified tool for monitoring data items from the
telescopes and other devices deployed at the CTA array sites. Data are immediately available for the operator interface and quick-look
quality checks and stored for later detailed inspection.
The Array Alarm System (AAS) is the subsystem that provides the service that gathers, filters, exposes, and persists alarms raised by both
the ACADA processes and the array elements supervised by the ACADA system. It collects alarms from the telescopes, the array
calibration, the environmental monitoring instruments and the ACADA systems. The AAS sub-system also creates new alarms based on
the analysis and correlation of the system software logs and the status of the system hardware providing the filter mechanisms for all
the alarms. Data from the alarm system are then sent to the operator via the human-machine interface.

www.cta-observatory.org

INTRODUCTION
The Cherenkov Telescope Array (CTA) will be the largest and most advanced ground-based facility for detection of very-high-energy electromagnetic radiation, from 20
GeV to 300 TeV. When entering the atmosphere, this radiation generates secondary charged particle cascades that can be detected directly or, as in the case of CTA,
through the Cherenkov radiation they emit. CTA will be composed of tens of telescopes deployed at North and South Hemispheres.
to achieve full-sky coverage, and an arcminute angular resolution at energies higher than 1 TeV. Typical phenomena that can be investigated include supernovae,
supernova remnants, pulsars and pulsar wind nebulae, binary stellar systems, interacting stellar winds, various types of active galaxies, gamma-ray bursts, and
gravitational wave transients. By means of its observation, CTA is expected to shed light on some unresolved astrophysics questions such as the role of relativistic
cosmic particles on star formation and galaxy evolution, the physics in the proximity of neutron stars and black holes, or the nature of the dark matter. Together with
the scientific data produced by CTA, a big volume of housekeeping and auxiliary data coming from weather stations, instrumental sensors, logging files, etc., must be
collected as well. In order to ingest the whole amount of data coming from tens of telescopes, a complex software architecture is required that must be able to face
such a cutting-edge technological challenge.

Fig. 2: Array Alarm System Architecture

Technologies
MON and AAS systems are developed in JAVA and they are integrated with the ALMA Common
Software (ACS), an open-source framework on which the software operating the ALMA
observatory is based on.
More specifically, MON can access and monitor ACS and OPC-UA data sources. To this aim, MON
makes use of Eclipse Milo SDK, which provides a pure-Java, open-source implementation of the
OPC-UA 1.03 client and server specifications. To exchange the acquired data among the
heterogeneous ACADA subsystems, we opted for Apache Avro, a data serialization framework
that uses JSON for defining schemas the information exchanged must be compliant with. We
make use of Apache Kafka, a distributed event streaming platform designed to handle data
streams frommultiple sources and deliver them to multiple consumers.
Besides, to forward and centralize logs generated by ACADA, we use a set of distributed
lightweight shippers based on Elastic Filebeat. Those log events are ingested, filtered and
manipulated by a centralized log aggregator based on Elastic Logstash, which acts as a data
processing pipeline that, in the end, sends them to Apache Kafka.
We opted for Apache Cassandra as our database management system (DBMS), which is
specifically designed to handle large amounts of data.
We make use of the Docker platform to easily distribute, replicate and scale our deployment
environment, packaging the technologies described above in containers.

Fig. 1: Monitoring and Logging Subsystem Architecture

Architecture
The Monitoring and Logging subsystems (MON) provide services for monitoring data items from the Telescopes and other devices deployed at the
CTA array sites and making those data immediately available for the operator interface and for quick-look quality checks, as well as to store them for
later detailed inspection. The monitoring system works continuously to record any monitoring data made available by Array Elements, which also
includes the data points required for engineering purposes.
Monitoring and Logging Supervisor: it receives startup and shut-down commands by the ACADA RM (Resource Manager) and passes them to the
MON systems. It provides its status information to the RM. The Resource Manager is the ACADA subsystem that supervises the monitoring logging and
alarm subsystems.
Environmental Conditions Inspector: A component that accumulates the data from the central calibration devices to produce indicators for the status
of the environment. Most of the environmental monitoring data is received directly from the monitoring system. The component processes the
monitoring data, puts associated data elements together, and determines and stores the status of the environment.
Monitoring Value Inspector: A component that provides the capability to re-sample the monitoring information coming in the form of irregular and
unevenly spaced time series data to a consistent and regular frequency. The component processes the monitoring events and raises alarms if data
are above the threshold for a predefined period of time. The Logging System is composed of the following main

building blocks:
Logging System: Gets logging information from relevant
software components and stores it. This logging comes in
three flavours: software logs provided by elements using
the control framework, software logs of the observation
scripts, software logs produced by low-level firmware, that
require reformatting to adapt to the rest of the logs.
Logs Analyzer: A tool to analyse logging data information
to trigger further alarms, as well as warnings for the
technical crew.

The Array Alarm System (AAS) is composed of the following
main building blocks:
Alarm Collector: Provides the services to collect any alarm
raised by the Array Elements or ACADA components.
Alarm Filter: Provides means to filter, merge and reduce
alarms according to defined rules.
Alarm Rules Database: A database defining the alarm
reduction rules for the Alarm Filter.
Alarm Storage: Local repository to store alarms and
reactions to alarm history.
AAS Supervisor: Manager component for the AAS,
connected with to the supervision tree provided by RM.

Aknowledgements
This work was conducted in the context of the CTA Consortium. We gratefully acknowledge financial support from the agencies and organizations listed here:
http://www.cta-observatory.org/consortium_acknowledgments


